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Electron-ion collision frequencies inform the (free)
electron response to an external perturbation

* e-l collision frequencies, v(w), are important for
* Modifying UEG dielectric theories (dynamic structure factors, stopping

powers, etc.)

* Plasma/MHD simulations
* Conductivities - specifically, the DC components are related:

og(w=0)=n./v(w=0)

* Currently, e-1 collision rate/frequency theories are indirectly validated
against x-ray Thomson scatterting (XRTS) spectra



Modeling XRTS spectra with collisions

* Use a modified Mermin model to simulate XRTS scattering spectra
— Modified = non-ideal density of states

— Depends on the electron-ion collision frequency, v(w)
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Modeling XRTS spectra with collisions
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— Modified = non-ideal density of states
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Can we infer dynamic collision
frequencies from XRTS spectra?



Simplify problem by parametrizing v(w)

* \Want representation be as general as
possible:

* Parametrize v(w) with (unit) triangle basis
functions

v(w) = Z a;tri; (w)

 Equivalent to linear interpolation with p
points (v(w,) = «,)

e eX.: Bessel function with p=16

Glosser.ca, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons



Statistical approach to inferring v(w)

* Optimization-based inversion to find
a. (= v(w,)) I1s unstable [2]

e Consider the posterior distribution of ;
parameters, a, given XRTS data, y: =
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* Markov Chain Monte Carlo (MCMC) to

sample from high-dimensional posterior <
(using emcee package [3,4]) T
[2] M. F. Kasim et al., Phys. Plasmas 26, 112706 (2019) FIFE PP PP

[3] D. Foreman-Mckey et al., Astro. Soc. of the Pacific 125, 925 (2013)
[4] D. Foreman-Mckey, J. Open Source Software 1, 2 (2016)



Test case: Inference with known collision rates
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* Multiple v(w) yield similar DSFs
— Not surprising!
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Inferring collision rates from simulated XRTS

Even with a flexible model for v(w),
unable to perfectly fit the TD-DFT
XRTS signal

A “good fit” to the plasmon peak does
not constrain the shape of the collision
frequency

— Not confident in low- and high-
energy limits
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Conclusions

Using a statistical approach for
Inference, we are finding that XRTS
spectra do not fully constrain collision
frequencies through the Mermin model

However, the constrained portions of
v(w) can help validate collision rate
theories in WDM

Drawbacks:

Method is only meaningful insofar as
the Mermin model is physically correct

Exploring high-dimensional spaces is
time consuming!
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Background

 Warm dense matter (WDM; near-
solid densities, thermal energies = 1
eV, or 11,604 K) exists in planetary
cores and Is created In inertial
confinement fusion experiments
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Background

 X-ray Thomson scattering (XRTS) can probe laboratory warm dense
matter (WDM) samples

 Sample conditions are inferred from comparisons of XRTS data with
complex model predictions

Measure inelastically |  ion featire
k = |ko — ks| scattered X-rays i [stastio sostisrig)
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Sample of WDM XRTS spectra [1].

[1] S. H. Glenzer et al., Phys. Rev. Letters 98, 065002 (2007)
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Optimize to find «,

(at. u.)

input
optimized

relative error = 6.79e-04
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L ' p
Optimization is unstable! S i)

* Inversion problem instabilities:
different v(w) lead to roughly
similar XRTS spectra [2]

* Can we explore possible collision
frequencies that yield outcomes

that agree with XRTS data within
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[2] M. F. Kasim et al., Phys. Plasmas 26, 112706 (2019)



