" Quantum computing as a wayfinder [
for frontier physics
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> Breaking “unbreakable” cryptography
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What else could you do with a quantum computer?

= Cybersecurity

= Machine Learning

= Search

= Software verification

CYBER

= Armor design

= |nertial guidance
= Radar, imaging
DEFENSE = Autonomy, C&C

= Mineral & oil exploration
= Qil well optimization

= Energy distribution
= Battery & solar cell design
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Portfolio optimization

Asset pricing

Risk analysis & trading strategies
Fraud detection & market simulation

Drug discovery

Catalyst & enzyme design
Bioinformatics, genomics

Patient diagnostics, improved MRI

Materials: OLEDs, composites
Logistics: Planning and scheduling
Automotive: Autonomous driving
Semiconductors: Chip layout & fab
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Step 1: Learn basics of quantum computing

Superposition Entanglement




* Step 2: Access a quantum computer

Industry Open Quantum Testbeds Build your own
= Maximum size & speed = Versatile, configurable, flexible = Total control
= Difficult to study how itworks = Not optimized for performance *  Costly and difficult
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Sat., Oct. 15, 9:06 am: J04.00003 QSCOUT: A Transparent Quantum Computing Testbed
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Step 2b: Learn quantum programming

Applications

Algorithms

Architecture

Lk

L JaqalPaq
— (Meta-programming with python)
M M o +pyGSTi
"E"Ionfﬁnw

L JELEL

(Just Another Quantum
Assembly Language)

T

[\
‘..6 JELELZ:
‘ Pulse-level control

gitlab.com/jaqal
gscout.std.vl &
register q[8]

let pi4 0.78539816339
let mpi2 -1.57079632679

macro Hadamard target {
Sy target
Px target

}

macro CNOT control target {
Sy control
MS control target 0 pi4d
< Rx control mpi2 | Rx target mpi2 >
Sy control

}

prepare_all
Hadamard q[1]
CNOT qg[2] q[1]
measure_all



Step 3: Explore the quantum computing frontier
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Interested in becoming a user? See
gscout.sandia.gov for details.

Assessing the Performance of the Randomized Analog
Verification protocol for gate-based devices

Native gate optimizations and performance benchmarking
Quantum volume benchmarking

Simulating quantum chemical nuclear dynamics problems.

Simulating the quantum dynamics of proton-coupled electron
transport problems in quantum chemistry.

Characterization and optimal control of time-correlated
amplitude control noise

Using control pulse engineering to improve the effective fidelity
of ion trap quantum computers

Simulating quantum evolution of infinite systems using tensor
networks

Connecting low level characterization metrics to higher level
algorithmic performance with a tractably small simulation

Digital simulation of non-stoquastic Hamiltonians
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2 \What's the principal challenge?

= Decoherence: With great power comes great fragility.

= Today: Noisy Intermediate Scale Quantum (NISQ) Computers
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Fri., Oct. 14, 3:06 pm: E02.00003 Demonstration of Mglmer-Sgrensen Gates Robust to

10 kHz Trap Frequency Error




The miracle of fault-tolerant quantum computing

Threshold behavior
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[Stephens, PRA 89, 022321 (2013)]

— *[Landahl, Morrison, arXiv:2110.10280]

Surface code patch

Qubits = vertices
Checks = Pauli ops on faces
Logical Majorana fermions = “twist” defects on corners*
Logical qubit = patch
Eventually, we will trade
quality for quantity!



How far do we need to go?

ENIAC,

FUtuware Transistors
Hardware _ Frontier Physics Needs [1]
Today (speculation) Quantum Error Correction

Quantum operations error probabilities (log)o)

Trapped lons Silicon Qua{ptum Dots
- -

Image: SNL, [1] lonQ (https://iong.co) Nature v. 555, pages 633—637 (2018) Nature v. 549, pages 242-246 (2017)
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Math methods on a fault-tolerant QC

How do you add two numbers on a quantum computer?

Cout

[www.geeksforgeeks.org/full-adder-in-digital-logic]

Problem 1: NAND uses irreversible logic.

Problem 2: FANOUT makes copies.
Solution: Convert to reversible logic without FANOUTSs.



Math methods on a fault-tolerant QC

Reversible full adder

Toffoli (CCNOT)

A A
C C o AB

Completely classical circuit: No quantum speedup!

= Speedups still available for superposition inputs...
"Are the sums of these million pairs of numbers all even?”




Advanced problem on a quantum computer
Input

v

Pre-processing

Q. State Preparation

Q. Alg. Primitive
v

Q. Measurement

v

Post-processing

v
Output




Example: Solving Ax = b on a quantum computer

Conjugate gradient Quantum HHL Algorithm [1]
O(Nsy/klog(l/e)) O(log(N)s?k polylog(1/e))

Three big caveats

= Only returns x as a quantum state: |z) = A" |b)

Ui = Can compute expectation values though: (M) = (x| M |x)

= = k might scale like O(N).

= Doesn't account for complexity in preparing |b).

— [1] Harrow, Hassidim, Lloyd, PRL 103, 150502 (2009)]
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Frontier Physics on a quantum computer
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Quantum Computing
.. Testbed for Science

WTe

ASCR Report on Quantum
Computing for Science

Opportunities for
MuclearPhysics &

i Quantum Information Science
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Dpportunities for Basic Research for
Mext-Generation Quantum Systems

Opportunities for Quantum Computing
in Chemical and Materials Sciences

Fusion Energy Sciences Roundtable on
Quantum Information Science
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Energy-efficient fertilizer production

Nitrogen The Haber-Bosch process consumes 2% of
A the world’s annual energy supply.
. |
Ammonia

MoFe protein

B gDRIFT 1.8 X 1028
| Single factorization 1.2 X 10"
Sparse 4.4 X 1010
Double factorization 6.4 X 1010

b

A L

]
|.

Tensor hypercontraction 3.2 X 1010

limages: Andrew Baczewski/Sandia, Nathan Wiebe/Markus Reiher, MoFe, FeMoco

Wikipedia, Rabe!, “Pear Leaf;” Sharon Loxton “Haber Process.”
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Better batteries through quantum computing

~electrons

positive
collector”

Goals

= Higher energy density
= Faster charging
= Longer lifetime

- negative

collector = Increased safety

cathode anode eleétrolyte

separator [ LOWer COSt

[Delgado et al., PRA 106, 032428 (2022)]

From ground state energy we can learn...

Equilibrium cell voltage
lonic mobility
Thermal stability Li,FeSiO, cathode  1st quantized QPE

Reaction rates LiPFg electrolyte 2nd quantized QPE

6 652
384 721

2.5X 103
6.7 X 1013




» The most important part of the physics frontier
- UNM attendees at 2019 APS 4CS meeting
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Quantum computers don’t do physics. Humans do physics.




“Computers are useless.
They can only give you answers.”

--Pablo Picasso
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