Thislpaperidescribeslobiectiveltechnicallresultsiandlanalysis fAnyisubijectivelviewsloropinionsithatimightibelexpressedfin}
. helpaperfdofnotinecessarilyirepresentlthefviewsfofithejU.S. of|lEnergyforfthe]United|StatesiGovernment.
— S —— Sandia
National
3 : - : 5 »
. X T | - - n - = 1
S I ey [ e — Tl o, e - . Laboratories

' Fabrication and Characterization of

Large Area Plasmonic Metasurface
Lenses

Katherine M. Musick and D. Bruce Burckel

dbburck@sandia.gov

54800 5.0kY 8.3mm x11.0k SE(M) 5/19/2020

Frontiers in Optics 2022
Rochester, NY

October 17, 2022
SandialNationalfLaboratoriesjislalmultimissionllaboratorvimanagedlandjoperatedibylNationalfTechnologvi&IEngineerinalSolutionsiofiSandia ILLC
subsidiaryjofl[Honeywelljinternationalfinc. JforftheJU.S JDepartmentfoflEnergy'siNationalNuclearlSecuritylAdministrationfunderficontractDE-N

Jalwhollyjo
A0003525.

SAND2022-14231C

Ch U.S. DEPARTMENT OF al
(@ ENERGY NASH
Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy's National
Nuclear Security Administration under
contract DE-NA0003525.

SAND2022-7216 C



Outline

1.Lenses
2.Membrane Projection Lithography
3.Genetic Algorithm Design

4. Metal-dependent Defects

5.Preliminary Lens Characterization



n
U
n
-
e
—



Creating Lenses
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Creating Lenses Using a Metasurface
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Membrane Projection
Lithography

DB Burckel et. al., “Micrometer-scale cubic unit cell 3D metamaterials”
Adv. Mater. 22 5053-5057 (2010).
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Wall-First Membrane Projection Lithography
Process Flow (2020)
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9 | Polymer-Based Membrane Projection Lithography (2009)
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DB Burckel et. al., “Micrometer-scale cubic unit cell 3D metamaterials” Adv. Mater. 22 5053-5057 (2010).
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CMOS Compatible MPL (2015)

Evacuate

DB Burckel et. al., “Micrometer-scale fabrication of complex 3D lattice + basis structures in silicon”
Opt Mat.. Exp. 10, 2231-2239 (2015).
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Sources of MPL Pattern Distortion

Projection at 45°
Preserves Pattern
Shape in Cubic Geometries
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DB Burckel et. al., “Micrometer-scale cubic unit cell 3D metamaterials” Adv. Mater. 22 5053-5057 (2010).




Process Flow Snapshot SEMs
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DB Burckel et. al., “Coupling between plasmonic and photonic crystal modes in suspended three-dimensional meta-films”
Opt. Exp. 28 (8), 10836-10846 (2020).
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Decorated Unit Cells — 3D Metafilms
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DB Burckel et. al., “Coupling between plasmonic and photonic crystal modes in suspended three-dimensional meta-films”
Opt. Exp. 28 (8), 10836-10846 (2020).




Genetic Algorithm Unit
Cell Design

B. Adomanis et. al., “3D plasmonic design approach for efficient transmissive Huygens
metasurfaces” Optics Express 27 20928-20937 (2019).

DZ Zhu et. al., “Optimal high efficiency 3D plasmonic metasurface
elements revealed by lazy ants” ACS Photonics 6, 2741-2748 (2019).

EB Whiting et. al., “Broadband asymmetric transmission of linearly polarized mid-
infrared light based on quasi 3D metamaterials” Adv. Func. Mater. 32, 2109659 (2022).




| Genetic Algorithm Design of Phase Structures
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17 | Design of Asymmetric Transmission Metasurface

Child After Crossover Child After Mutation Child

o Jill o il o 1] 0 0 o Jil] o 9 o ol [

a “onf ﬁ . nmﬁ i
a 0

ﬁ E L Enm o] [ —

Broadband y-pol " noon” ml:l oofn 8-
LP light ‘\| o Bl o
Create Child from Mutation Fill in Holes and Support
2 Parents Corner Connections

Next Generation

oge no
Inutlal_ — Evalgate Converged? Eamad Selection Crossover Mutation
Population Designs

+yes

Broadband
X
y-po LP light C o6

{[ty2x.

|
1 15 2 25 3
Function Evaluation

" TR
n B

|I l:

i =l




GA Designed Phase Elements — 4um Designh wavelength

Phase Elements from Penn State

1t =0.94,¢ = —177.3°
$°

@

@ ’

P =089,6 =574
25 M

[t = 0.86,¢ = 61.0°

&

&

5 -1 <05 0 05 1 15

B 1t)? = 0.94,6 = —148.5° B

1t =092,6 = -121.7°

[t} =087,¢=-91.2°

1.5

25 25 2.5
2 . 2 2
L5 I 1.5 1.5
1 1 1
0 0 0
0.5 05 05
= 5 e e 5 -1 -1
A5l 05005 L LS A5 -1 05 0 05 1 15 A5 -1 05 0005 1
[t =092, = —28.4° [t = 0.87,6 = —0.6° [¢]* = 0.84,¢ = 29.3°
25 25 25
2 2 2
15 L5 15
1 1 1
0.5 05 05
0 0 0
0.5 05 05
-1 1 -1
15 -1 05 0 05 1 1.5 ‘e . o " nr . .- T 3 _8a SRV N 5
It = 0.81,6 = 96.5° [t7'= 0.85,6 = 124.0° oo M =091¢=1499°
2.5 25 mo25
: & - &
15 15 15
1 1 1
0.5 ‘ 0.5 0.5
0 0 0
0.5 0.5 -05
-1 -1 s 1 05 0 o5 1
-5 -1 05 0 05 1 -5 -1 05 0 05 1 15 R0 b U -

Membrane patterns prior to evaporation

AR A L 7

18




Metal-dependent Defects
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Metal Choice Affects

Meta-atom Shape
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” | Pattern fidelity vs melting point
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‘ Preliminary Characterization of 2-color m
MPL — Metasurface Lens
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‘ Preliminary Characterization of 1-color MPL — Metasurface Lens
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Photonic Crystal Slab
Modes

Square lattice
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DB Burckel et. al., “Coupling between plasmonic and photonic crystal modes in suspended three-dimensional meta-films”
Opt. Exp. 28 (8), 10836-10846 (2020).



26 ‘Analyzing the Scattering Spectrum : Empty Boxes @!
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DB Burckel et. al., “Coupling between plasmonic and photonic crystal modes in suspended three-dimensional meta-films” Opt. Exp. 28 (8), 10836-10846
(2020).
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DB Burckel et. al., “Coupling between plasmonic and photonic crystal modes in suspended three-dimensional meta-films” Opt. Exp. 28 (8), 10836-10846

(2020).

Analyzing the Scattering Spectrum: Empty Boxes
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Coupling between Photonic
Crystal Slab Modes and
3D Plasmonic Meta-atoms

o
!

DB Burckel et. al., “Coupling between plasmonic and photonic crystal modes in suspended three-dimensional meta-films” Opt. Exp. 28 (8), 10836-10846
(2020).



s Decorating with plasmonic meta-atoms
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DB Burckel et. al., “Coupling between plasmonic and photonic crystal modes in suspended three-dimensional meta-films”
Opt. Exp. 28 (8), 10836-10846 (2020).



Polarization in 3D Metafilms
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Polarization Polarization

Electric field normal to Electric field i.n the
plane of ellipse plane of ellipse

DB Burckel, M Goldflam, KM Musick, PJ Resnick, G Armelles, and MB Sinclair, “Coupling between plasmonic and
photonic crystal modes in suspended three-dimensional meta-films” Optics Express 28 (8), 10836-10846 (2020).




Transparent Polarization
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DB Burckel et. al., “Coupling between plasmonic and photonic crystal modes in suspended three-dimensional meta-films”
Opt. Exp. 28 (8), 10836-10846 (2020).




Ellipses on the Floor
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DB Burckel et. al., “Coupling between plasmonic and photonic crystal modes in suspended three-dimensional meta-films”
Opt. Exp. 28 (8), 10836-10846 (2020).




Resonant Polarization
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. Wall-first membrane projection lithography fabrication approach is a robust method

for creation of infrared 3D metafilms

. 3D metafilms can be used to create macroscopic lenses with unique characteristics

due to their geometry.

. 3D metafilms combine and couple photonic crystal slab modes and plasmonic particle

modes

. Planar ellipses on the floor respond to both incident polarizations

. Vertical ellipses exhibit a resonant response to linear polarization with e-field in the

plane of the ellipse, while being largely transparent to the orthogonal polarization

|
Conclusions @!
|

. Retardation effects broaden the spectral width of resonances for vertically oriented

ellipses.
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