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Abstract—The development of the High-Resolution Wavelet
Transform (HRWT) is driven by the need of increasing the high-
frequency resolution of widely used discrete Wavelet Transforms
(WTs). Based on the Stationary Wavelet Transform (SWT),
which is a modification of the Discrete Wavelet Transform
(DWT), a novel WT that increases the number of decomposition
levels (therefore increasing the previously mentioned frequency
resolution) is proposed. In order to show the validity of the
HRWT, this paper encompasses a theoretical comparison with
other discrete WT methods. First, a summary of the DWT and
the SWT, along with a brief explanation of the WT theory, is
provided. Then, the concept of the HRWT is presented, followed
by a discussion of the adherence of this new method to the WT’s
common properties. Finally, an example of the application is
performed on a transient waveform analysis from a power system
fault event, outlining the benefits that can be obtained from its
usage compared to the SWT.

Index Terms—Digital Signal-Processing, Wavelet Transforms,
Digital Filter Design, Time-Frequency Decomposition

I. INTRODUCTION

Time-frequency analysis tools are used in many different
fields that may need to study non-stationary signals. Over the
last few decades, the number of available mathematical tools
and capabilities has been largely expanded by a committed
research community. The beginning of this field starts with the
Short-Time Fourier Transform (STFT), proposed by D. Gabor
in 1946, which aims to overcome the limitations of the Fourier
Transform (FT) [1]. Basically, the FT aims to define the
frequency spectrum of a stationary signal over a period of time.
The FT uses sine waves of different frequencies to analyze a
signal. Therefore, the signal is represented through a linear
combination of sine waves [2]. However, it doesn’t provide
any detail about when each of the frequency components were
present in the signal. By applying the FT over short time
windows instead, it is possible to capture local frequency
variations in the signals. However, this approach is not as
convenient as different signals can have the same Fourier
domain representation, and there is a trade-off between time
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and frequency resolution [3]. A narrow time window will
result in a good time resolution but on a poor frequency
resolution. Whereas a wide-time window will result in a
good frequency resolution but in a deficient time resolution
and, therefore, it will not be possible to distinguish the local
changes of frequency [4]. The employed window is the same
for all frequencies, and if several resolutions are required,
the STFT operation has to be repeated for several window
lengths [5]. Following the path of the SFTF, other approaches
were proposed, such as the Wigner-Ville Distribution (WVD)
function [1]. This technique applies the STFT to the signal
autocorrelation function. This gives a high-resolution time-
frequency representation of a signal, but the results are difficult
to interpret due to the appearance of cross terms. In those
cases, a smoothed WVD pseudo version is preferred [6].

However, the rise of Wavelet Transforms (WTs) has hoarded
the attention of researchers in the last four decades. Many
applications use them [7], such as: audio and image com-
pression, signal denoising, feature extraction, etc. The concept
of “wavelet” was first introduced by J. Morlet in 1982 for
geophysical applications [8]. In these transforms, the signal is
decomposed on a base of functions called “daughter wavelets”
or simply, “wavelets”, which are scaled and shifted copies
of a mother wavelet. Compared to the STFT, WTs varies si-
multaneously frequency and time scales resolution, increasing
the time-frequency analysis capabilities [4]. Over the years,
several researchers have made important contributions that
have expanded the WT theory and applications. In this regard,
the work of I. Daubechies and R. Coifman in the development
of new wavelet families is especially remarkable [9], [10].

The most common types of WTs are the Continuous
Wavelet Transform (CWT) and the Discrete Wavelet Trans-
form (DWT). The CWT performs multiple convolutions of
the input signal over time and a defined set of wavelets. Each
daughter wavelet draws information about specific frequency
components of the input signal. A matrix of coefficients is
obtained where the y-axis corresponds to the “scales” (in-
versely related to the frequency components, so the first scale
corresponds to the highest frequency component in which the
signal can be decomposed) while the x-axis is time. The main
drawback of the CWT is that it has a large redundancy of
information when it comes to the signal reconstruction, which
implies more computation time and resources. The Stockwell
transform (or S-transform) was developed in mid-1990s and
conceptually is a generalization of the STFT. Instead of the
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fixed window, it is based on a moving and scalable localizing
Gaussian window. The S-transform lies close to the CWT,
providing a certain phase correction to this transform [11].

Nevertheless, the discrete WTs present a more optimum
approach. In this group, both the previously mentioned DWT
and the Stationary Wavelet Transform (SWT) are included.
Proposed by S. Mallat in the 1980s, the approach is to
decompose the signal in successive frequency bands using
multirate filter banks [12]. This is known as Multi-Resolution
Analysis (MRA) or “subband coding” [13]. The base case
employs two-channel critically sampled filter banks in each
decomposition level, which actually gives the lowest number
of coefficients that is required for a perfect reconstruction
(very desirable for compression tasks) [14]. The SWT is a
modification of the DWT which provides some advantages of
its counterpart. First it is shift-invariant, which is desirable for
time-series analysis. Second, all sets of coefficients have the
same length, which may ease their interpretation.

The development of the WTs continued, and the second
generation of WTs appeared at the end of the 1990s [15].
This new group of transforms aims to maintain the same
time-frequency decomposition properties, but adapt them to
overcome some traditional assumptions about the infinity of
the signals. The concept behind this revision is to split the
signals into two groups: even and odd samples, and try to
predict the odd samples using the even ones. This assumes that
consecutive samples are highly correlated in digital signals,
and that the local signal structure can be predicted [16]. Even
though the concept sounds promising, they never achieved the
popularity of the first generation of WTs.

The purpose of this paper is to propose a new modification
of other discrete WTs that aims to provide a larger amount
of decomposition levels, and which is especially suitable for
time-frequency signal representation of high-frequency sig-
nals. In comparison to others WTs, the HRWT aims to reduce
the spread of the frequency bands (in practice, this means to
increase the number of decomposition levels) to achieve a finer
frequency decomposition. The rest of the paper is organized
as follows: Section II explains in detail the concepts of DWT
and SWT, Section III explains the theory behind the WTs,
Section IV shows how this theory is adapted on the HRWT.
Next, Section V compares the results for the HRWT and
the SWT. Section VI includes a discussion of other methods
that could draw a similar result to the HRWT. Finally, the
conclusions of this paper are gathered in Section VII.

II. BACKGROUND

This section aims to explain the basics of the discrete WTs,
namely the DWT and the SWT, on top of which the HRWT
is designed. In order to understand the novelty of the new
proposed transform, it is necessary to understand the method
behind the DWT and SWT. The DWT will be explained
first, followed by a second subsection that details the changes
introduced in the SWT.

A. The Discrete Wavelet Transform (DWT)

As mentioned before, the implementation of the DWT is
similar to sub-band filtering or filter banks, in which the signal
goes through a series of filters that extract the frequency
components in the corresponding frequency sub-band. This
resembles a tree structure, as can be observed in Fig. 1. In
this example, the sampling frequency (Fs) is 10 MHz.

Fig. 1: DWT structure for 3 decomposition levels

In each level, the input signal is convoluted by the coef-
ficients of a pair of half-band high-pass (Hp) and low-pass
(Lp) filters, returning a set of “detail” and “approximation”
coefficients. It is important to note that, in the discrete WTs,
the mother wavelet is interpreted as a (continuous) filter
impulse response [14]. These filter coefficients depend on
the wavelet family and order. The mathematical operation of
convolution is defined as follows:

x[n] ∗ f [n] =
∞X

k=−∞

x[k] · f [n− k], (1)

where x[n] is the input signal and the f [n] is the impulse
response of the filter. In the DWT, there are two main aspects
to note: decrease of the cut-off frequency, and decrease of the
output signal length by two, both as the level of decomposition
increases. The first observation is achieved by applying half-
band filters. For a sampling frequency of 10 MHz, the maxi-
mum frequency component that we can expect to be contained
by the measured signal is 5 MHz (without aliasing). In the
first level, the high-pass filter output, which correspond to
the detail coefficients of the first level of decomposition, is
going to cover the frequency range of 2.5 MHz up to 5 MHz.
The output of the low-pass filter contains all the frequency
components from 0 to 2.5 MHz. By continuing the process,
the maximum frequency in the frequency band is consecutively
divided by 2. The resulting frequency bands for the detail
coefficients can be observed in Table I.

TABLE I: Boundaries for the Frequency Bands

Decomposition Level Lower Frequency Upper Frequency
1 2.5 MHz 5 MHz
2 1.25 MHz 2.5 MHz
3 625 kHz 1.25 MHz
4 312.5 kHz 625 kHz
5 156.25 kHz 312.5 kHz
6 78.125 kHz 156.25 kHz



The second observation can be explained by taking into
account the Nyquist-Shannon Theorem. In sub-band filtering,
the filtering process is accompanied by a down-sampling of the
signal. This occurs because, as in each decomposition level the
maximum frequency is divided by two, the required sampling
frequency can be halved as well without loss of information.
In practice, this means that as the level of decomposition
increases, the length of the output signals decreases with a
rate of a power of two (one of every two samples is dropped
in each decomposition level as it is not necessary). Therefore,
this leads to a poorer time resolution, as any event which
was accurately represented in a full-length input signal has
to be represented in a smaller number of coefficients in each
new level. Referring to the half-band high-pass filter as h[n],
and the half-band low-pass filter as g[n], the output of a new
decomposition level can be expressed as follows:

yhigh[n] =
X
k

x[k] · h[2k − n], (2)

ylow[n] =
X
k

x[k] · g[2k − n], (3)

where x[n] is the input of that decomposition level and
yhigh[k] and ylow[k] are the set of output signals. The election
of a downsampling rate of 2 is not arbitrary. It comes from
the concept of Perfect Reconstruction (PR) filter banks, in
which the signal is decomposed in M frequency bands with M
different channels, while a downsampling of rate N is applied
to each channel in order to avoid aliasing [14]. Afterwards,
the signal is reconstructed by upsampling at a rate N and
applying the synthesis filters. It is important to highlight that
this is exactly the same process that would be needed for the
reconstruction of the signal out of the DWT coefficients. A
PR filter bank with 2 channels can be observed in Fig. 2.

Fig. 2: Two-channel PR filter structure

DH [n] and DG[n] are the high-pass and low-pass decom-
position filters, respectively, and SH [k] and SG[k] are the
corresponding synthesis filters. Technically, the input and the
output should be exactly the same signal. The difference is
that, in the DWT, the filtering process is done on a tree
structure, while on a PR filter bank it is done at the same
level. In filter banks, the general rule is that the downsampling
rate N has to be less or equal to the number of channels M .
For some applications, especially in audio compression, the
filter needs to have the lower possible number of channels
(which the lowest non-trivial response is 2) in order to reduce

the number of outputs. Therefore, the downsampling rate in
this case has to be the same as the number of channels
(which gives M = N ). Filter configurations that fulfill the
condition of M = N are usually called “critically sampled
filter banks”. These filters gives the maximum available rate
of downsampling that still allows to perfectly reconstruct the
signal. The DWT, using 2 channels (in a tree structure) and
a downsampling rate of 2, provides the smallest number of
coefficients that are needed to represent and reconstruct the
signal. A downsampling rate of 2 forces to use half-band filters
in each decomposition level.

B. Stationary Wavelet Transform (SWT)

For the SWT, the structure is also similar to sub-band fil-
tering: signals enter each decomposition level and go through
a low-pass and high-pass filter. However, the SWT applies
scaling in a different way. Instead of filtering and then
downsampling the signal in each level, the SWT upsamples
the filters using zeroes [17]. The cut-off frequency of the
filters is modified by this procedure and there is no need
for downsampling. Therefore, the length of the signal remains
constant in all the levels. This offers an interesting property
in time-series analysis: it is shift-invariant. Therefore, two
identical signals but shifted in the time domain (for example, if
padded with zeroes) would lead to the same transformed time
(taking into account that there is a delay). The DWT, however,
is not shift-invariant and would lead to different results for
shifted signals [18]. This is related to the downsampling
or decimation process that takes place on every level. The
frequency information is retained on some coefficients that are
halved in each new decomposition level. Two identical signals
but shifted in time would be downsampled in a different
way, leading to different decomposition coefficients. The block
diagram for the SWT is shown in Fig. 3.

Fig. 3: SWT decomposition structure for 3 levels

The filters are upsampled by inserting zeroes between the
filter coefficients. In order to recursively reduce the cut-off
frequency by 2 in each decomposition level, the number of
zeroes is increased exponentially by 2 following this series:

num 0s SWT (L) = 2L − 1, (4)

where L is the number of decomposition level. Therefore,
for the first level, no zeroes will be introduced. For the



second level, just one zero will be introduced between the
filter coefficients. For the third level, three zeroes will be the
separation between the original filter coefficients, etc.

III. THE WAVELET TRANSFORM THEORY

The theory in this section is based on [19]. Formally, the
discrete WTs can be defined, in a very simplified manner, as
a two-parameter linear expansion that depends on scale j and
translation coefficient k. In the following expression,

f(t) =
X
j,k

aj,kψj,k(t), (5)

the term aj,k refers to the set of the detail coefficients plus the
last approximation coefficients, while ψj,k refers to the wavelet
functions (i.e., the scaled daughter wavelets). It is important
to note that the ψj,k form an orthonormal basis for all j and
k. Even though non-orthonormal wavelet basis do exist, MRA
approaches are benefited from a simpler coefficient calculation
and the fulfillment of the Parseval’s Energy (PE) Theorem
when orthonormal basis are employed. In order to clarify the
notation in regard to scaling, the scale j is opposite to the term
“decomposition level”. Therefore, the first decomposition level
actually refers to the largest scale (which produces the sharpest
wavelets).

A more general expression for the DWT is:

f(t) =
X
j,k

aj,k2
j/2ψ(2jt− k), (6)

where the daughter wavelets are actually computed by scaling
the mother wavelet ψ. This scaling is done at an exponential
rate to take into account the downsampling by a factor of 2.
Note that 2j is the scaling of t (j is the log2 of the scale), 2−jk

is the translation in t, and 2j/2 maintains the (perhaps unity)
L2 norm of the wavelet at different scales. This is efficiently
implemented using MRA. A general expression can be found
in the following equations:

f(t) = fj0(t) +
X
j

fj(t), (7)

fj0(t) =
X
k

cj0(k)2
j0/2φ(2j0t− k), (8)

fj(t) =
X
k

dj(k)2
j/2ψ(2jt− k), (9)

where fj0(t) defines the lower frequency part of the signal
f(t), which is represented by the set of last approximation
coefficients cj0 . Similarly, fj(t) stands for the several de-
composition levels in which the signal f(t) is successively
decomposed for each scale j, and dj are the detail coefficients
that define those signals in the wavelet basis. Finally, φ and
ψ are the scaling and wavelet functions, respectively. The
scaling function φ is related to the low-pass filtering procedure
and, according to the MRA theory, it is obtained first. Then,
the wavelets functions ψj,k are designed on top of that
ensuring that orthonormality is maintained. Orthonormality is

a requirement for the PE theorem, which states that there is a
relationship between the energy in both the time domain and
frequency domains, as shown in:

N−1X
n=0

|x[n]|2 =
1

N

N−1X
k=0

|X[k]|2, (10)

where X[k] is the N-point Discrete Fourier Transform (DFT)
of x[n]. Therefore, a (very desirable) consequence of the PE
theorem is that, if the scaling functions and wavelets form an
orthonormal basis, the energy of the signal f(t) can be related
to the energy in each of the components and their wavelet
coefficients as defined in the following expression:

Z
|f(t)|2dt =

∞X
l=−∞

|c(l)|2 +
∞X
j=0

∞X
k=−∞

|dj(k)|2. (11)

The scaling function for a given scale j is a linear com-
bination of the shifted versions of the scaling function at the
next scale (i.e., higher frequency components), as it can be
observed in:

φ(2jt− k) =
X
n

g(n)
p
(2)φ(2j+1t− 2k − n), (12)

where g(n) represents the low-pass filter coefficients. This
satisfies the conceptual condition for MRA that requires that
lower frequency components can be explained using larger
frequency components. A similar expression could be derived
for the wavelet functions ψj,k but using both the high-pass
filter coefficients h(n) and the low pass filter coefficients g(n),
as the relationship is not direct. If these concepts are translated
to (8)-(9), the following relationship between coefficients can
be established:

cj+1(k) =
X
m

cj(m)g(k−2m)+
X
m

dj(m)h(k−2m) (13)

cj(k) =
X

g(m− 2k)cj+1(m) (14)

dj(k) =
X
m

h(m− 2k)cj+1(m). (15)

These equations reveal the importance of the correct design
of the filter coefficients g(n) and h(n), and the importance
of the downsampling by 2 as part of the scaling process in
the DWT. As it was explained before, in the SWT the scaling
process is the upsampling of the filter coefficients introducing
zeroes. In this regard, the novelty introduced in the HRWT is
that the filter coefficients are kept the same, but the upsampling
process does not strictly follow a rate of 2.

IV. THE HIGH-RESOLUTION WAVELET TRANSFORM
(HRWT)

A. The concept

In the HRWT, the upsampling rate is left to the designer
criteria, and it is not required to follow a specific pattern. The
general expression of the HRWT is as follows:



f(t) =
X
j,k

aj,kψ(ν(j)t− k), (16)

where ν(j) stands for the custom upsampling rate per scale.
As it is going to be shown later, the usage of a rate less than
2, but with the same filter coefficients, leads to the splitting
of the former frequency into tighter bands (or “sub-frequency
bands”). As a clarification, the composition of ν(j) is related
to the desired inserted number of zeroes:

ν(j) = num 0s HRWT (j) + 1, (17)

where j is the scale. The maximum number of sub-frequency
bands is achieved when the rate of inserted zeroes grows
just by 1 zero per additional decomposition level. However,
although this gives the maximum frequency resolution, it may
not be useful for a moderately large number of equivalent SWT
levels. Therefore, the content of ν(j) is left to design criteria.
Maximum resolution can be used in the levels of interest, and
then the rate of 2 (or even larger) can be used for the rest of
the levels to save computation resources. Table II shows how
the maximization works for up to the equivalent SWT Level 4,
and then comes back to the original frequency band resolution
(as in the SWT).

TABLE II: SWT and HRWT Equivalence

SWT Level Num 0s SWT HRWT Level Num 0s HRWT
1 0 1 0
2 1 2 1

3 3 3 2
4 3

4 7

5 4
6 5
7 6
8 7

5 15 9 15

As it can be seen, SWT Levels 1 and 2 already had the
maximum frequency resolution. So, the HRWT starts to make
a difference at equivalent SWT Level 3.

B. Validation

The HRWT complies with the most important properties
that are common to WTs (A full description of these properties
and proofs can be found in [19]). This is in part achieved
because the filter coefficients are kept the same as in the
default discrete WTs. Regarding the filter coefficients, these
properties are fulfilled: X

n

h(n) =
√
2 (18)

X
n

|h(n)|2 = 1 (19)

X
n

h1(n) = 0. (20)

Regarding orthonormality, the following properties have to
be satisfied:

X
n

h(n)h(n− 2k) = δ(k) =

�
1 if k = 0
0 otherwise

(21)

X
n

h(n)h1(n− 2k) = 0 (22)

h1(n) = ±(−1)nh(N −m), (23)

where N is an arbitrary odd integer. It has been checked that
they still hold for an arbitrary number of inserted zeroes.

V. THE USE CASE

In order to show the application of the HRWT decomposi-
tion in an actual signal, a wide-band power system fault event
signal is used as an example. The signal is shown in Fig. 4.

Fig. 4: Signal to decompose

This section is divided into three parts. In the first one,
there is a comparison of the filters between the HRWT and
the SWT. Secondly, the signal is decomposed into 5 equivalent
SWT levels using both the SWT and the HRWT, and the
respective coefficients are shown. In the case of the HRWT,
the maximum resolution is going to be used up to equivalent
SWT Level 4. Therefore, equivalent SWT Level 5 employs
again the exponential rate. Finally, the reconstruction errors
following the inverse process to recover the original signal
are compared.

A. Filter coefficients comparison

In each decomposition level, there is a set of half-band
high-pass and low-pass filters. In the case of the SWT, the
cut-off frequency is halved in each consecutive level. In the
HRWT, the newly generated intermediate levels also show
an intermediate cut-off frequency. This leads to the set of
frequency responses shown in Fig. 5.

However, in the end what really matters for the decompo-
sition is what comes of combining these filters together. For
example, the overall filter that gives the detail coefficients in
SWT Level 3 is the combination of the low-pass filters in
Level 1 and 2, and the high-pass filter in Level 3. Looking at
these combinations, the frequency responses in Fig. 6 can be
obtained. The same approach is applied to the HRWT filters.



(a) Equivalent SWT Level 1 (b) Equivalent SWT Level 2

(c) Equivalent SWT Level 3 (d) Equivalent SWT Level 4

(e) Equivalent SWT Level 5

Fig. 5: Comparison of filters’ frequency response

Fig. 6: Comparison of decomposition frequency bands

It becomes evident that the HRWT is dividing the former
frequency bands of SWT Levels 3 and 4 into sub-frequency
bands, providing additional resolution. SWT Levels 1 and 2
remain unchanged. For equivalent SWT Level 5, the rate is
exponential again with a factor of 2, so there is no difference
between the HRWT and the SWT. What is on the left-hand
side of the SWT Level 5 is the low-pass filter response at
that decomposition level, which gives the last approximation
coefficients.

B. Decomposition coefficients comparison

Fig. 7 shows a level-wise comparison of the detail and
last approximation coefficients for the SWT and the HRWT.

Fig. 7: Comparison of decomposition coefficients

The coefficients for Level 1 and 2 in both transforms are the
same, which makes sense with the filter frequency response
previously shown in Fig. 6. In SWT Level 3 and 4, the



overall magnitude of the coefficients is similar to the ones
of the equivalent HRWT levels. This is coherent, since both
transforms are working with the same frequency bands. The
difference is that the HRWT divides this band into several
sub-bands for further analysis. For SWT Level 5 and HRWT
Level 9, even though they work with the same frequency
band and the filter response should be the same, some slight
differences can be appreciated in the coefficients. This is due
to the fact that the inputs, which for one is the approximation
coefficients of SWT Level 4, meanwhile for the other one
is the approximation coefficients of HRWT Level 8, are not
exactly the same. Therefore, the numerical values do not match
perfectly. The same observation applies for the last set of
approximation coefficients.

C. Signal reconstruction

One property of the WTs is that they are easily invertible.
This means that the original signal can be recovered without
a significant loss (just small numerical errors during the
calculations) if the process is repeated backwards using the
synthesis filters instead. In this section, the error introduced
by the HRWT is compared to the case of the SWT. The error is
calculated as the difference between the original signal and the
reconstructed signal. As it can be seen in Fig. 8, the errors for
both transforms are practically negligible and very close. The
fact that the HRWT introduces a larger error can be explained
by the decomposition in a larger number of levels.

Fig. 8: Comparison of decomposition frequency bands

VI. DISCUSSION

Other methods for achieving a larger decomposition of the
default energy bands, such as Wavelet Packet Decomposition
(WPD) or M-band decomposition (in opposition to just using
2 channels) have been proposed [19]. The HRWT doesn’t aim
to provide better decomposition capabilities. It is just another
method to achieve these extra decomposition levels. In fact,
those methods would split Levels 1 and 2, which is something
that the HRWT cannot do. However, the HRWT is able to
further split the other frequency bands. Actually, the principle
shown in the HRWT can be combined with the aforementioned
method to achieve even a more detailed decomposition.

VII. CONCLUSIONS

The Wavelet Transform (WT) that is proposed in this paper,
called the High-Resolution WT (HRWT), provides additional
frequency decomposition, in selected levels, compared to other
discrete WT, such as the Discrete WT (DWT) or the Stationary
WT (SWT). This is done by modifying the filter scaling
method defined in the SWT by maximizing the number of
inserted zeroes among consecutive levels, which leads to the
splitting of former decomposition levels into several new sub-
levels. The capabilities of the method have been validated
on a wide-band signal from a power system fault event. In
addition, it has been shown that the decomposed signal can
be reconstructed back without a significant error. Therefore,
the HRWT achieves the goal of expanding the decomposition
capabilities of other discrete WTs in those frequency bands
where additional decomposition is needed.
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