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Abstract—Many distributed applications implement complex 

data flows and need a flexible mechanism for routing data between 

producers and consumers. Recent advances in programmable 

network interface cards, or SmartNICs, represent an opportunity 

to offload data-flow tasks into the network fabric, thereby freeing 

the hosts to perform other work. System architects in this space 

face multiple questions about the best way to leverage SmartNICs 

as processing elements in data flows. In this paper, we advocate 

the use of Apache Arrow as a foundation for implementing data-

flow tasks on SmartNICs. We report on our experiences adapting 

a partitioning algorithm for particle data to Apache Arrow and 

measure the on-card processing performance for the BlueField-2 

SmartNIC. Our experiments confirm that the BlueField-2’s 

(de)compression hardware can have a significant impact on in-

transit workflows where data must be unpacked, processed, and 

repacked.  
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I. INTRODUCTION 

Distributed applications routinely need an efficient 
mechanism for routing data from collections of producers to 
collections of consumers. For example, in high-performance 
computing (HPC), scientific simulation workflows generate 
parallel streams of output that data management services gather, 
analyze, and transform before archiving to storage. Similarly, 
geographic information system (GIS) data flows often aggregate 
sensor data from a variety of sources, reorganize it, and then 
transmit derived data products to remote subscribers based on 
user specifications. Current-generation systems implement their 
distributed data-flow operations in host-level software that 
communicates through standard network protocols. 

Commercial hardware vendors have recently started 
supplementing their products with embedded processing 
resources that may offer significant advantages for systems that 
implement distributed data flows. Storage vendors offer 
computational storage devices (CSDs) with user-programmable 
FPGAs and processors that allow the user to execute 
computations at the disk. These resources allow filtering 
operations to be placed close to data sources and may 
dramatically reduce the amount of data returned to the user. In 
the networking arena, vendors are placing embedded processors 
in network interface cards (NICs). These SmartNICs can help 

process in-transit data and are especially useful in distribution 
tasks where data flows must transmit customized data products 
to multiple destinations. 

The presence of these programmable, embedded processors 
throughout the system architecture motivates the use of eusocial 
methods, where many low-capability devices are programmed 
to collectively act towards a more complex, system-level goal  
[1]. Our work in eusocial methods is focused on constructing 
general-purpose data management software that makes it easier 
for system developers to map different data flows onto a 
collection of embedded processors in the network and storage 
fabrics. There are many questions architects face in this space. 
How should in-transit data be represented and processed? How 
well do current embedded processors perform fundamental data-
sifting operations? When is data compression profitable in these 
architectures? 

In this paper, we focus on constructing a computational 
engine that can perform a variety of eusocial tasks on 
SmartNICs. We advocate for the use of Apache Arrow [2] to 
standardize how in-transit data is represented and processed by 
eusocial devices. As a means of better evaluating current 
generation hardware, we have implemented a partitioning 
algorithm for particle datasets on the NVIDIA BlueField-2 VPI 
SmartNIC [3] and measured its performance with different 
datasets. Additional experiments with hardware accelerators on 
this card confirm that compression hardware can have a 
significant impact on performance and motivate the need for 
Arrow enhancements in future work.  

II. PARTICLE DATA FLOWS 

Many HPC and GIS applications operate on particle data 
and rely on complex data management services to route particle 
state information between producers and consumers distributed 
throughout the network. While particle datasets are smaller in 
size than multimedia datasets, application data flows can be 
challenging to implement because the datasets contain many 
small items that are tedious to inspect. As such, it is beneficial 
to consider hardware environments that can offload the task of 
reorganizing and sifting through the data. In this section we 
provide application examples from the HPC and GIS spaces, and 
discuss a common data-flow use case where data is transitioned 
from a spatially-organized form to a temporally-organized form. 

A. Particle Simulations in Scientific Computing 

Many simulations in scientific computing employ particle-
in-cell (PIC) methods [4, 5, 6] to model different phenomena. 
These simulations manage a large collection of discrete particles 
and track their progress as they move through time and space. A 
particle is defined by a small amount of state information, such 
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as its position, velocity, charge, and type. Given that simulation 
fidelity improves as the number of particles in the simulation 
increases, researchers typically leverage parallel simulation 
techniques to distribute the data and work across many compute 
nodes. Although a simulator’s particle data may contain a 
treasure trove of information for scientists, the sheer size of this 
data makes it infeasible to save except in the case of occasional 
checkpointing. Analysts may run supplemental analysis 
applications in parallel with the simulation and inspect subsets 
of the data without impeding the simulation. 

B. Asset Tracking with Geographic Information Systems 

A similar need to collect and process large amounts of 
particle data can be found in GIS applications that manage 
sensor data about real-world assets, such as airplanes, ships, and 
land vehicles. Although the “particles” in these systems are 
significantly larger in physical size than those in the simulations, 
the processing challenges for manipulating the data flows are the 
same: different distributed sensor systems produce continuous 
feeds of observation data that needs to be reorganized to be of 
value to downstream consumers. 

C. Reorganizing Spatial Indices to Temporal Indices 

One hardship of working with particle data flows is that there 
are significant differences between the way producers and 
consumers expect data to be organized. Producers typically 
organize data in a spatial manner, where each sensor generates 
an update for all items in a physical region during a particular 
time interval. In contrast, analytics consumers often need data 
organized temporally for each item. As illustrated in Fig. 1 with 
airplane data, temporal tracks can yield better insight into 
patterns of activity than positional snapshots alone. 

 

Fig. 1. Airplane tracks reveal patterns of activity 

Distributed, log-structured merge (LSM) trees [7] are a 
convenient mechanism for converting particle data flows from a 
spatial organization to a temporal organization when multiple 
producers and consumers are involved. In this approach, a 
collection of processing elements is used to reorganize data as it 
moves through different stages in the tree. Each processing 
element absorbs incoming data until it reaches its storage 
capacity. When compaction is necessary, data is split based on 
particle IDs and transmitted to the next appropriate processing 
element in the tree. While processing elements only need to 
store, sift, and transmit blocks of particles, they can greatly 
improve the searchability of online datasets. 

III. SMART NETWORK INTERFACE CARDS (SMARTNICS)  

Over the last decade, hardware vendors have introduced 
programmable network interface cards or SmartNICs that 
enable users to place custom computations at the edge of the 
network fabric. While the original motivation for developing 
SmartNICs was to allow security researchers to monitor and 
inspect network flows in real time [8, 9], the need for tighter 
infrastructure control in cloud computing platforms has driven 
SmartNIC vendors to create more powerful cards. Vendors such 
as NVIDIA (formerly Mellanox), Fungible, Chelsio, Intel, and 
Xilinx have constructed SmartNICs that allow users to embed 
computations at the network’s edge. While some SmartNIC 
architectures employ FPGAs or ASICs to maximize packet 
processing performance, most feature a multicore embedded 
processor that is easier for developers to leverage.  

A. NVIDIA BlueField-2 VPI SmartNIC 

The NVIDIA BlueField-2 VPI SmartNIC is a programable 
NIC that features eight A72 ARM processor cores, 16GB of 
DRAM, and 60GB of flash storage. It includes two 100Gb/s 
network ports that can interact with either InfiniBand or 
Ethernet. The default software stack for the card boots an 
Ubuntu 20.04 installation of Linux. The ARM processors can be 
configured to either (1) intercept traffic between the host and 
network or (2) serve as a separate host that shares access to the 
network ports. The BlueField-2 includes three hardware 
acceleration units to improve application performance: a RegEx 
engine for data filtering, a SHA-2 unit for encryption functions, 
and a (de)compression engine.  

B. BlueField-2 Compression Accelerator 

Data compression is important in data-intensive applications 
because it reduces the amount of data that needs to be 
transmitted through the network, cached in memory, and stored 
on disk. Most big data I/O libraries (e.g., Avro [10], Parquet, 
ORC [11], and Arrow IPC) feature built-in compression support 
for a variety of codecs. As such, any application that processes 
this data must be capable of decompressing and compressing the 
data in a manner that is compliant with the library’s data format. 

The BlueField-2’s compression accelerator can efficiently 
compress and decompress data using the DEFLATE algorithm 
[12]. DEFLATE is widely used and is a key part of standards 
such as PNG [13], HTTP [14], TLS [15], and SSH [16]. The 
BlueField-2’s hardware implementation of DEFLATE is 
compatible with the zlib library, which means that when needed, 
data compressed by the hardware can be decompressed by 
software and vice versa. This interoperability is critical in 
eusocial applications because it enables data processing tasks to 
be “pushed down” to offload the host or “pushed back” in 
situations where an embedded device becomes saturated with 
work. The BlueField-2’s compression hardware is currently 
accessed through the Data Plane Development Kit (DPDK) [17, 
18], which is a library for constructing high-performance data-
plane applications on top of a variety of network hardware 
devices. The compression hardware is designed to process a 
stream of individual data packets in an efficient manner and 
includes DMA hardware to facilitate the movement of data 
between the accelerator and memory. Compression performance 
for the BlueField-2 hardware is discussed in Section VI. 



C. Performance Expectations for SmartNICs 

It is important to recognize that the processing resources 
available to a SmartNIC are considerably less than those 
available to a host. In prior benchmark experiments [3], we 
observed that the BlueField-2’s ARM processors performed 
roughly an order of magnitude slower than host systems, due to 
a combination of processor and memory bandwidth limitations. 
The gap between embedded and server processors is not 
unexpected and is unlikely to change in the foreseeable future. 

While SmartNICs are not general-purpose accelerators, 
there are several scenarios where we expect the hardware to be 
beneficial to applications. First, SmartNICs are sufficient for 
performing simple filtering and projection operations that do not 
involve complex computations. Second, data flows involving 
compression or encryption may be able to leverage the card’s 
hardware accelerators and achieve a speedup. Finally, it may be 
advantageous to offload low-rate, asynchronous event 
processing to a SmartNIC, due to the disturbances these 
operations have on other tasks that run on the host. 

IV. SOFTWARE INFRASTRUCTURE FOR IN-TRANSIT PROCESSING  

Data-intensive applications in both science and commercial 
enterprises are often constructed using multiple systems with 
independent implementation histories and choices of 
programming languages. A key operating expense of these 
applications is the movement of data across these systems. But 
what sounds like a problem of moving data between systems is 
really the challenge of efficiently (1) converting the data from a 
system’s internal in-memory representation to a wire format and 
(2) accessing large amounts of data via record-by-record API 
calls. This is precisely the challenge that Apache Arrow set out 
to address, an open-source project that since 2016 has been 
quickly gaining adoption within the data science community. 

A. Apache Arrow 

The key insight underlying the design of Apache Arrow 
ecosystem is that by creating an efficient open data processing 
platform around a common and efficient in-memory data 
representation with many different programming language 
bindings (so far C, C++, C#, Go, Java, JavaScript, Julia, 
MATLAB, Python, R, Ruby, and Rust), data can move 
efficiently between the ecosystem’s data processing engines 
running on different systems. Data processing and exchange can 
be implemented with a number of building blocks that include 
the Parquet file format [19], the Flight framework for efficient 
data interchange between processes [20], the Gandiva LLVM-
based JIT computation for executing analytical expressions by 
leveraging modern CPU SIMD instructions to process Arrow 
data [21], and Awkward Array for restructuring computation on 
columnar and nested data [22]. On top of these building blocks 
exist a number of Arrow integration frameworks, including the 
Fletcher framework that integrates FPGAs with Apache Arrow 
[23], NVIDIA’s RAPIDS cuDF framework that does similar for 
GPUs [24, 25], the Plasma high-performance shared-memory 
object store [26], the Skyhook distributed storage plug-in to 
embed Arrow processing engines within Ceph storage objects 
[27, 28], and the Substrait effort to standardize an open format 
for query plans between query optimizers and processing 
engines [29]. There are many more projects that are adopting the 
Apache Arrow in-memory representation and the Dataset 

Interface that abstracts over a variety of file formats and other 
data sources [30]. The amount of significant investment poured 
into this ecosystem is reflected by its recent cadence of four 
major version releases per year, most recently version 9.0.0 with 
1061 issues resolved by 114 distinct contributors over 3 months. 

B. Data Organization in Apache Arrow and Opportunities 

Apache Arrow represents tabular data in a columnar, 
randomly-accessible in-memory format, allowing for nested 
data structures and null values. The format is designed to 
maximize CPU throughput by optimizing the data layout for 
pipelining, SIMD instructions, and cache locality. Data is 
communicated by schema information involving one or more 
optional metadata dictionary batches that are followed by record 
batches. A record batch is composed of multiple arrays, each 
representing a part of the data from one or more fields from a 
table. Record batches are designed to be the unit of data 
processing communicated to and from processing engines. 
Batching of records minimizes the need for record-based API 
calls and the batch size can be optimized for pipeline processing 
while the columnar layout allows for SIMD instructions [31]. 

Arrow IPC format is a protocol that encodes record batches 
into contiguous bytes for storing in either files or memory. This 
encoding process is known as serialization. Fig. 2 shows how a 
typical Arrow table is serialized into a byte sequence in the IPC 
format. 

 

Fig. 2. A simplified data serialization process of an Arrow table 

 The schema of a table is first serialized and written to the 
output memory buffer. Then, for each record batch, the arrays it 
contains will be serialized one after another according to their 
types. With all record batches being serialized resulting in a 
buffer vector, these buffers will be compressed in parallel for 
better compression throughput. The number of threads that will 
be spawned in this process typically matches the size of the 
buffer vector. For most array types, serializing an array produces 
two buffers — a data buffer and an additional buffer containing 
the metadata called the validity bitmap. As a result, the total 
number of threads started is a multiple of the number of 
columns, which can keep many cores busy. For example, in one 
of our datasets for experiments, the loaded Arrow table contains 
17 columns; however, the compression phase spawns 35 threads 
occupying more cores than the ones available from a CPU 
socket. As such, the generated compression workload may 
hinder or stall performance-critical applications such as 
simulations that are running on the same host. Leveraging the 
compression accelerator from the BlueField-2 SmartNIC 



provides an opportunity to break the dependence of compression 
performance on intensive computing resource occupation. 

V. DATA PARTITIONING EXPERIMENTS 

As a means of better evaluating the suitability of Apache 
Arrow for processing particle data flows on SmartNICs, we 
implemented a data partitioning algorithm used in LSM trees. In 
this work, we used Apache Arrow to represent particles in a 
tabular form that is suitable for transfer over the network and 
leveraged Arrow’s filtering operations to split a table into 
smaller tables based on particle IDs. We measured the amount 
of time required to unpack, partition, and repack data for three 
particle datasets from different communities to demonstrate the 
flexibility of this approach. 

A. Implementation 

We constructed a C++ program that inspects and processes 
in-transit data objects in network data flows. This program is 
supplied with a contiguous-memory data object and is expected 
to provide one or more contiguous result objects that are to be 
sent to different locations. For this work we use Apache Arrow’s 
IPC methods to handle transformations between a serialized 
object that can be transported in the network and an in-memory 
format that is suitable for tabular computations. The partitioning 
algorithm examines a table and uses a small number of bits in 
the particle ID field to determine which output table should hold 
each particle. Although Arrow provides a group-by function that 
would be useful for performing a split in a single pass, it is 
currently limited to statistical operations. As such, we 
implemented the partitioning as a multistep algorithm that 
executes a select query to generate each table. While far from 
ideal, this approach is acceptable in the LSM tree work because 
of the low-fanout requirements of the distributed algorithm. 

B. Reference Datasets 

Three particle datasets were used in these to provide better 
insight into the performance of the algorithm with different data: 

• TrackML Particle Tracking Challenge (“Particles”) 
[32]: CERN supplied a particle simulation dataset for a 
machine learning competition hosted through Kaggle in 
2018. This dataset contains 10 numerical fields per particle. 

• OpenSky Network (“OpenSky Planes”) [33]: The 
OpenSky Network collects worldwide ADSB information 
for airplanes from volunteers. Entries contain 16 fields 
composed of a mix of numerical and string values. 

• NOAA Maritime (“Ships”) [34]: NOAA provides 
historical AIS position data for ships near the US coastline. 
Daily data was converted to a particle format that contained 
17 fields composed of a mix of numerical and string values. 
 

Given that the BlueField-2 SmartNIC operates with 16GB of 
DRAM, we set a 1GB limit for the size of uncompressed data to 
use in our experiments. We decompressed each dataset, selected 
the number of rows that would be closest to 1GB in size, and 
then recompressed the data to serve as input to the experiments. 

C. Experiments 

Performance experiments were conducted on a compute 
node that features a 32-core AMD EPYC 7543P processor and 

a BlueField-2 VPI card. In the first experiment, we measured the 
overall amount of time for the host or SmartNIC to unpack, 
partition, and repack the tabular data into 2 to 16 output 
partitions. As depicted in Fig. 3, the host operates roughly four 
times faster than the BlueField-2 when processing 
uncompressed data. Increasing the number of partitions 
increased the processing time in most cases. A closer inspection 
of the Particles dataset revealed an ID address space issue that 
resulted in a distribution imbalance. These issues can be 
mitigated by hashing the ID or selecting ranges that are more 
meaningful to the application.  

 

Fig. 3. Overhead for partitioning without compression 

 

Fig. 4. Timing breakdown for a 4-way split on the BlueField-2 using 

different software compression methods 

 The second experiment examines the impact of Apache 
Arrow’s built-in software compression mechanisms on 
performance. These tests vary whether the input and output 
objects are serialized with no compression, LZ4 Frame 
compression [35], or Zstd compression [36]. Fig. 4 provides the 



timing breakdowns for unpacking, partitioning, and repacking 
1GB of particle data when performing a 4-way split. As 
expected, uncompressed data is significantly faster to read than 
compressed data. Repacking the data, however, is similar in all 
cases. This overhead highlights the fact that serialization by 
itself is an expensive operation. 

D. Discussion 

While the host processors in this experiment yielded better 
performance, it is important to note that the BlueField-2’s 
embedded processors were performant enough to be of value in 
many data flows. Scenarios where producers generate periodic 
bursts of data are applicable, as the SmartNIC can absorb the 
bursts and process the data before the next wave arrives. 

Implementing the partitioning operation with Apache Arrow 
highlighted its development advantages. Arrow’s well-reasoned 
data primitives and existing support for serialization, 
compression, and processing greatly simplified the 
implementation effort. Our implementation worked with all 
three datasets without modification, even though each dataset 
had different data components and ID bitwidths. Although the 
current version of Arrow does not have all the primitives of a 
higher-level library such as Pandas [37], it contains adequate 
primitives to implement a variety of operations. 

VI. COMPRESSION EXPERIMENTS 

As demonstrated in the previous section, converting between 
on-the-wire and in-memory formats is an important and time-
consuming task for systems that process in-transit tabular data. 
Given that the Bluefield-2 SmartNIC provides a compression 
accelerator and multiple cores that Apache Arrow can leverage, 
it is worthwhile to explore the different compression options that 
are available for packing and unpacking data. We conducted 
three experiments to answer each of the following questions: (1) 
Is the compute overhead caused by software-based compression 
significant enough to justify offloading the (de)compression to 
hardware accelerators? (2) How does the throughput 
performance of hardware-based compression compare with 
software-based compression in a threaded environment? (3) Is 
there a change in the compression ratio between the hardware- 
and software-based methods? 

A. Challenges 

The BlueField-2’s compression hardware can be accessed 
through the Data Plane Development Kit (DPDK) library. 
Unfortunately, this library is highly tuned for network 
operations and is organized around a packet-processing model 
that can be cumbersome for other types of applications. We 
faced several challenges in adapting DPDK’s compression 
functions to process our Arrow data. First, individual data 
packets have a maximum size of 64KB. To compress larger 
amounts of data, developers must slice input and output buffers 
into packet-sized segments and then generate a packet that 
contains a list of compression commands for processing each 
segment. Second, converting between contiguous and 
segmented data representations can result in extra memory 
allocations and copies that disrupt the throughput of the data 
flow through the compression hardware. Optimizing the 
pipeline requires a detailed understanding of both DPDK and the 
hardware, and is tedious for users that simply want to 

(de)compress large blocks of data. Third, embedded hardware 
environments have limited resources. Therefore, recycling 
resources after each compression operation (while still 
managing errors) is extremely important. Finally, a single ARM 
CPU core may not be sufficient for maximizing the performance 
of the compression accelerator. As such, it is valuable to 
construct a pipeline that pre-allocates memory and divides work 
among cores as needed. 

B. Implementation: Bitar 

To simplify accessing the compression hardware for data 

compression, we implemented the Bitar [38] library on top of 

DPDK and Arrow. Bitar provides a convenient (de)compression 

API and features zero-copy processing, synchronous and 

asynchronous operation, and multicore/multidevice support. It 

is specifically designed to operate without root privileges, which 

is uncommon in DPDK-based applications. Bitar also allows 

users to access the BlueField-2’s compression hardware from 

either the host’s or BlueField-2’s processors. 

C. Experiments 

All experiments in this section were carried out on a 
CloudLab [39] host that has two AMD EPYC 7542 CPUs (a 
total of 64 cores), 512GB of DDR4 memory, and a BlueField-2 
SmartNIC connected with PCIe 4.0 x16 lanes. Each experiment 
was run on all three reference datasets with a maximum 
outstanding data window size of 160MB due to memory 
constraints imposed by DPDK and the pipelined nature of the 
compression hardware. 

Since Bitar has not yet been fully integrated into Arrow, our 
experiments compress Arrow tables differently depending on 
whether software- or hardware-based compression is measured. 
The software-based approach relies on Arrow’s existing 
compression mechanisms, which serialize and compress each 
column independently before writing the final output buffer (i.e., 
“inner compression”). In contrast, the hardware-based approach 
serializes the entire table and then streams the data through the 
compression hardware (i.e., “outer compression”). While the 
former is preferred, the latter is sufficient for network transfers. 

1) Software Compression Overhead for a Single Thread: 
Our first research question focuses on whether software-based 
compression overhead is significant enough to justify hardware 
acceleration. To answer this question, we constructed an 
experiment that measures the amount of time for a single thread 
to pack and unpack Arrow data in software using different 
codecs.  We intentionally excluded the memory allocation time 
in this experiment given that it can be preallocated using 
knowledge of historical output buffer sizes. 

 

Fig. 5. Single-thread (de)serialization time with different codecs 

  

   

   

  

   

   

 

   

   

 
  

   

 

   

   

   

   

    

                         

 
  

 
  
 
 
 
 
 

                                              



Timing results for the Particles dataset (see Fig. 5) indicate 
that (de)serialization without compression is efficient, thanks to 
the zero-copy buffer design of Arrow’s IPC format. However, 
involving either LZ4 Frame or Zstd compression introduces 
significant CPU overhead and increases time consumption by 
one to two orders of magnitude. We observed similar results 
using the other two reference datasets. Given that compression 
is a significant impediment to performance, we conclude that 
acceleration is worthwhile in performance-sensitive 
applications. 

2) Throughput in a Threaded Environment: Our second 
question focuses on how well the software- and hardware-based 
compression methods perform in a threaded environment. One 
advantage of Arrow is that it automatically parallelizes the 
packing and unpacking of tables by dispatching each column’s 
work to its own thread. In Bitar’s case, multiple threads can be 
used to maximize the amount of work supplied to the 
compression hardware. We conducted experiments to observe 
how (de)compression throughput improves when scaling to an 
optimal number of worker threads. 

 

Fig. 6. (De)serialization throughput with different compression codecs and 

degree of parallelism. Thick black borders indicate hardware 

(de)compression results. 

Fig. 6 shows throughput measurements for the “OpenSky 
Planes” reference dataset. Without limiting the number of 
threads in the experiment, both LZ4 Frame and Zstd used 35 
threads during compression and decompression. In contrast, the 
hardware compression throughput with Bitar was maximized 
when using only two threads. Bitar outperformed the software-
based approaches in every case for this dataset. For software-
based compressions, LZ4 Frame performs better than Zstd in 
terms of throughput. However, Bitar’s performance is better 
than that of LZ4 Frame by 3.3x and 1.1x in the case of single-
thread and multithreaded performance, respectively. 

Measurements for the other two reference datasets produced 
similar results. The software-based approach was observed to 
outperform the 2-thread Bitar configuration, but only in 
situations where a wide dataset with many columns enabled the 
host to leverage many cores (e.g., >35). Conservatively 
speaking, the throughput of the compression accelerator rivals 
that of a software implementation that consumes all the cores 
of a modern CPU socket. Having the ability to (de)compress 
data at near network speeds and with only a fraction of the 
system’s available compute cores is essential for building 
streaming data analytics. The results of this experiment also 
highlight the performance scalability problem of using general-
purpose cores for (de)compression tasks, as throughput 
depends on the number of columns in the data. 

3) Impact on Compression Ratio: Our third question 
focuses on quantifying how the compression ratio changes when 
switching between different configurations of the software- and 
hardware-based compression methods. The compression ratio is 
computed by dividing the compressed IPC buffer size for a 
particular configuration by the uncompressed IPC buffer size. 
We expect the ratio to change in the Bitar hardware 
implementation because (1) a different compression algorithm 
is used and (2) the implementation applies compression on the 
entire table instead of individual columns. 

The compression ratios for different configurations are 
presented in Fig. 7. Results listed for Bitar are presented for one 
and two threads to illustrate that splitting the work into multiple 
threads does not have a significant impact on output size. The 
hardware-based compression using the DEFLATE algorithm 
provides a compression ratio that is between that of the LZ4 
frame and Zstd codecs in all three datasets. These measurements 
confirm that offloading computations to the BlueField-2’s 
compression accelerator does not result in a significant sacrifice 
in the compression ratio. 

 

Fig. 7. Compression ratios under different compression approaches 

VII. SUMMARY AND FUTURE WORK 

While current-generation SmartNICs are slower at 
processing data than servers, they can perform fundamental 
data-sifting tasks that are commonly required by different 
workflows. The compression hardware is particularly appealing 
for this work, as it provides a way to efficiently unpack, process, 
and repack in-transit data products.  However, the current 
interface for accessing the hardware is challenging to leverage 
and an obstacle for developers. We present Bitar as a reusable 
library for simplifying compression on the BlueField-2 cards. 

Apache Arrow provides a data model and a collection of 
operators that are particularly well-suited for processing data on 
eusocial devices. The tabular notation allowed us to devise a 
general framework for storing and processing particle data that 
did not need to be adjusted when switching between datasets. 
Other types of data may not map to a tabular form as elegantly. 

There are multiple paths forward from this work. Having 
completed the on-card processing work we will transition to 
network tasks related to distributing data between SmartNICs 
and coordinating resource utilization across a distributed 
system. Based on the TCP bottlenecks observed in previous 
work, it is imperative that these operations take place with 
RDMA primitives. For the compression work, Arrow will need 
minor adjustments to allow it to more fully leverage Bitar. The 
adjustments will allow Arrow to use hardware compression on 
individual columns, thereby allowing finer-grained data access 
by applications. 
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