
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Processing Particle Data Flows with SmartNICs

Jianshen Liu

Computer Science & Engineering

Univ. of California, Santa Cruz

Santa Cruz, CA, USA

jliu120@ucsc.edu

Carlos Maltzahn

Computer Science & Engineering

Univ. of California, Santa Cruz

Santa Cruz, CA, USA

0000-0001-8305-0748

Matthew L. Curry

Scalable System Software

Sandia National Laboratories

Albuquerque, NM, USA

mlcurry@sandia.gov

Craig Ulmer

Scalable Modeling & Analysis

Sandia National Laboratories

Livermore, CA, USA

cdulmer@sandia.gov

Abstract—Many distributed applications implement complex

data flows and need a flexible mechanism for routing data between

producers and consumers. Recent advances in programmable

network interface cards, or SmartNICs, represent an opportunity

to offload data-flow tasks into the network fabric, thereby freeing

the hosts to perform other work. System architects in this space

face multiple questions about the best way to leverage SmartNICs

as processing elements in data flows. In this paper, we advocate

the use of Apache Arrow as a foundation for implementing data-

flow tasks on SmartNICs. We report on our experiences adapting

a partitioning algorithm for particle data to Apache Arrow and

measure the on-card processing performance for the BlueField-2

SmartNIC. Our experiments confirm that the BlueField-2’s

(de)compression hardware can have a significant impact on in-

transit workflows where data must be unpacked, processed, and

repacked.

Keywords—SmartNICs, compression, in-transit computations

I. INTRODUCTION

Distributed applications routinely need an efficient
mechanism for routing data from collections of producers to
collections of consumers. For example, in high-performance
computing (HPC), scientific simulation workflows generate
parallel streams of output that data management services gather,
analyze, and transform before archiving to storage. Similarly,
geographic information system (GIS) data flows often aggregate
sensor data from a variety of sources, reorganize it, and then
transmit derived data products to remote subscribers based on
user specifications. Current-generation systems implement their
distributed data-flow operations in host-level software that
communicates through standard network protocols.

Commercial hardware vendors have recently started
supplementing their products with embedded processing
resources that may offer significant advantages for systems that
implement distributed data flows. Storage vendors offer
computational storage devices (CSDs) with user-programmable
FPGAs and processors that allow the user to execute
computations at the disk. These resources allow filtering
operations to be placed close to data sources and may
dramatically reduce the amount of data returned to the user. In
the networking arena, vendors are placing embedded processors
in network interface cards (NICs). These SmartNICs can help

process in-transit data and are especially useful in distribution
tasks where data flows must transmit customized data products
to multiple destinations.

The presence of these programmable, embedded processors
throughout the system architecture motivates the use of eusocial
methods, where many low-capability devices are programmed
to collectively act towards a more complex, system-level goal
[1]. Our work in eusocial methods is focused on constructing
general-purpose data management software that makes it easier
for system developers to map different data flows onto a
collection of embedded processors in the network and storage
fabrics. There are many questions architects face in this space.
How should in-transit data be represented and processed? How
well do current embedded processors perform fundamental data-
sifting operations? When is data compression profitable in these
architectures?

In this paper, we focus on constructing a computational
engine that can perform a variety of eusocial tasks on
SmartNICs. We advocate for the use of Apache Arrow [2] to
standardize how in-transit data is represented and processed by
eusocial devices. As a means of better evaluating current
generation hardware, we have implemented a partitioning
algorithm for particle datasets on the NVIDIA BlueField-2 VPI
SmartNIC [3] and measured its performance with different
datasets. Additional experiments with hardware accelerators on
this card confirm that compression hardware can have a
significant impact on performance and motivate the need for
Arrow enhancements in future work.

II. PARTICLE DATA FLOWS

Many HPC and GIS applications operate on particle data
and rely on complex data management services to route particle
state information between producers and consumers distributed
throughout the network. While particle datasets are smaller in
size than multimedia datasets, application data flows can be
challenging to implement because the datasets contain many
small items that are tedious to inspect. As such, it is beneficial
to consider hardware environments that can offload the task of
reorganizing and sifting through the data. In this section we
provide application examples from the HPC and GIS spaces, and
discuss a common data-flow use case where data is transitioned
from a spatially-organized form to a temporally-organized form.

A. Particle Simulations in Scientific Computing

Many simulations in scientific computing employ particle-
in-cell (PIC) methods [4, 5, 6] to model different phenomena.
These simulations manage a large collection of discrete particles
and track their progress as they move through time and space. A
particle is defined by a small amount of state information, such

This material is based upon work supported by the U.S. Department of

Energy, Office of Science, Office of Advanced Scientific Computing Research

under Field Work Proposal Number 20-023266. Sandia National Laboratories
is a multimission laboratory managed and operated by National Technology &

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of

Honeywell International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525. This paper

describes objective technical results and analysis. Any subjective views or

opinions that might be expressed in the paper do not necessarily represent the
views of the U.S. Department of Energy or the United States Government.

SAND2022-14226CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

as its position, velocity, charge, and type. Given that simulation
fidelity improves as the number of particles in the simulation
increases, researchers typically leverage parallel simulation
techniques to distribute the data and work across many compute
nodes. Although a simulator’s particle data may contain a
treasure trove of information for scientists, the sheer size of this
data makes it infeasible to save except in the case of occasional
checkpointing. Analysts may run supplemental analysis
applications in parallel with the simulation and inspect subsets
of the data without impeding the simulation.

B. Asset Tracking with Geographic Information Systems

A similar need to collect and process large amounts of
particle data can be found in GIS applications that manage
sensor data about real-world assets, such as airplanes, ships, and
land vehicles. Although the “particles” in these systems are
significantly larger in physical size than those in the simulations,
the processing challenges for manipulating the data flows are the
same: different distributed sensor systems produce continuous
feeds of observation data that needs to be reorganized to be of
value to downstream consumers.

C. Reorganizing Spatial Indices to Temporal Indices

One hardship of working with particle data flows is that there
are significant differences between the way producers and
consumers expect data to be organized. Producers typically
organize data in a spatial manner, where each sensor generates
an update for all items in a physical region during a particular
time interval. In contrast, analytics consumers often need data
organized temporally for each item. As illustrated in Fig. 1 with
airplane data, temporal tracks can yield better insight into
patterns of activity than positional snapshots alone.

Fig. 1. Airplane tracks reveal patterns of activity

Distributed, log-structured merge (LSM) trees [7] are a
convenient mechanism for converting particle data flows from a
spatial organization to a temporal organization when multiple
producers and consumers are involved. In this approach, a
collection of processing elements is used to reorganize data as it
moves through different stages in the tree. Each processing
element absorbs incoming data until it reaches its storage
capacity. When compaction is necessary, data is split based on
particle IDs and transmitted to the next appropriate processing
element in the tree. While processing elements only need to
store, sift, and transmit blocks of particles, they can greatly
improve the searchability of online datasets.

III. SMART NETWORK INTERFACE CARDS (SMARTNICS)

Over the last decade, hardware vendors have introduced
programmable network interface cards or SmartNICs that
enable users to place custom computations at the edge of the
network fabric. While the original motivation for developing
SmartNICs was to allow security researchers to monitor and
inspect network flows in real time [8, 9], the need for tighter
infrastructure control in cloud computing platforms has driven
SmartNIC vendors to create more powerful cards. Vendors such
as NVIDIA (formerly Mellanox), Fungible, Chelsio, Intel, and
Xilinx have constructed SmartNICs that allow users to embed
computations at the network’s edge. While some SmartNIC
architectures employ FPGAs or ASICs to maximize packet
processing performance, most feature a multicore embedded
processor that is easier for developers to leverage.

A. NVIDIA BlueField-2 VPI SmartNIC

The NVIDIA BlueField-2 VPI SmartNIC is a programable
NIC that features eight A72 ARM processor cores, 16GB of
DRAM, and 60GB of flash storage. It includes two 100Gb/s
network ports that can interact with either InfiniBand or
Ethernet. The default software stack for the card boots an
Ubuntu 20.04 installation of Linux. The ARM processors can be
configured to either (1) intercept traffic between the host and
network or (2) serve as a separate host that shares access to the
network ports. The BlueField-2 includes three hardware
acceleration units to improve application performance: a RegEx
engine for data filtering, a SHA-2 unit for encryption functions,
and a (de)compression engine.

B. BlueField-2 Compression Accelerator

Data compression is important in data-intensive applications
because it reduces the amount of data that needs to be
transmitted through the network, cached in memory, and stored
on disk. Most big data I/O libraries (e.g., Avro [10], Parquet,
ORC [11], and Arrow IPC) feature built-in compression support
for a variety of codecs. As such, any application that processes
this data must be capable of decompressing and compressing the
data in a manner that is compliant with the library’s data format.

The BlueField-2’s compression accelerator can efficiently
compress and decompress data using the DEFLATE algorithm
[12]. DEFLATE is widely used and is a key part of standards
such as PNG [13], HTTP [14], TLS [15], and SSH [16]. The
BlueField-2’s hardware implementation of DEFLATE is
compatible with the zlib library, which means that when needed,
data compressed by the hardware can be decompressed by
software and vice versa. This interoperability is critical in
eusocial applications because it enables data processing tasks to
be “pushed down” to offload the host or “pushed back” in
situations where an embedded device becomes saturated with
work. The BlueField-2’s compression hardware is currently
accessed through the Data Plane Development Kit (DPDK) [17,
18], which is a library for constructing high-performance data-
plane applications on top of a variety of network hardware
devices. The compression hardware is designed to process a
stream of individual data packets in an efficient manner and
includes DMA hardware to facilitate the movement of data
between the accelerator and memory. Compression performance
for the BlueField-2 hardware is discussed in Section VI.

C. Performance Expectations for SmartNICs

It is important to recognize that the processing resources
available to a SmartNIC are considerably less than those
available to a host. In prior benchmark experiments [3], we
observed that the BlueField-2’s ARM processors performed
roughly an order of magnitude slower than host systems, due to
a combination of processor and memory bandwidth limitations.
The gap between embedded and server processors is not
unexpected and is unlikely to change in the foreseeable future.

While SmartNICs are not general-purpose accelerators,
there are several scenarios where we expect the hardware to be
beneficial to applications. First, SmartNICs are sufficient for
performing simple filtering and projection operations that do not
involve complex computations. Second, data flows involving
compression or encryption may be able to leverage the card’s
hardware accelerators and achieve a speedup. Finally, it may be
advantageous to offload low-rate, asynchronous event
processing to a SmartNIC, due to the disturbances these
operations have on other tasks that run on the host.

IV. SOFTWARE INFRASTRUCTURE FOR IN-TRANSIT PROCESSING

Data-intensive applications in both science and commercial
enterprises are often constructed using multiple systems with
independent implementation histories and choices of
programming languages. A key operating expense of these
applications is the movement of data across these systems. But
what sounds like a problem of moving data between systems is
really the challenge of efficiently (1) converting the data from a
system’s internal in-memory representation to a wire format and
(2) accessing large amounts of data via record-by-record API
calls. This is precisely the challenge that Apache Arrow set out
to address, an open-source project that since 2016 has been
quickly gaining adoption within the data science community.

A. Apache Arrow

The key insight underlying the design of Apache Arrow
ecosystem is that by creating an efficient open data processing
platform around a common and efficient in-memory data
representation with many different programming language
bindings (so far C, C++, C#, Go, Java, JavaScript, Julia,
MATLAB, Python, R, Ruby, and Rust), data can move
efficiently between the ecosystem’s data processing engines
running on different systems. Data processing and exchange can
be implemented with a number of building blocks that include
the Parquet file format [19], the Flight framework for efficient
data interchange between processes [20], the Gandiva LLVM-
based JIT computation for executing analytical expressions by
leveraging modern CPU SIMD instructions to process Arrow
data [21], and Awkward Array for restructuring computation on
columnar and nested data [22]. On top of these building blocks
exist a number of Arrow integration frameworks, including the
Fletcher framework that integrates FPGAs with Apache Arrow
[23], NVIDIA’s RAPIDS cuDF framework that does similar for
GPUs [24, 25], the Plasma high-performance shared-memory
object store [26], the Skyhook distributed storage plug-in to
embed Arrow processing engines within Ceph storage objects
[27, 28], and the Substrait effort to standardize an open format
for query plans between query optimizers and processing
engines [29]. There are many more projects that are adopting the
Apache Arrow in-memory representation and the Dataset

Interface that abstracts over a variety of file formats and other
data sources [30]. The amount of significant investment poured
into this ecosystem is reflected by its recent cadence of four
major version releases per year, most recently version 9.0.0 with
1061 issues resolved by 114 distinct contributors over 3 months.

B. Data Organization in Apache Arrow and Opportunities

Apache Arrow represents tabular data in a columnar,
randomly-accessible in-memory format, allowing for nested
data structures and null values. The format is designed to
maximize CPU throughput by optimizing the data layout for
pipelining, SIMD instructions, and cache locality. Data is
communicated by schema information involving one or more
optional metadata dictionary batches that are followed by record
batches. A record batch is composed of multiple arrays, each
representing a part of the data from one or more fields from a
table. Record batches are designed to be the unit of data
processing communicated to and from processing engines.
Batching of records minimizes the need for record-based API
calls and the batch size can be optimized for pipeline processing
while the columnar layout allows for SIMD instructions [31].

Arrow IPC format is a protocol that encodes record batches
into contiguous bytes for storing in either files or memory. This
encoding process is known as serialization. Fig. 2 shows how a
typical Arrow table is serialized into a byte sequence in the IPC
format.

Fig. 2. A simplified data serialization process of an Arrow table

 The schema of a table is first serialized and written to the
output memory buffer. Then, for each record batch, the arrays it
contains will be serialized one after another according to their
types. With all record batches being serialized resulting in a
buffer vector, these buffers will be compressed in parallel for
better compression throughput. The number of threads that will
be spawned in this process typically matches the size of the
buffer vector. For most array types, serializing an array produces
two buffers — a data buffer and an additional buffer containing
the metadata called the validity bitmap. As a result, the total
number of threads started is a multiple of the number of
columns, which can keep many cores busy. For example, in one
of our datasets for experiments, the loaded Arrow table contains
17 columns; however, the compression phase spawns 35 threads
occupying more cores than the ones available from a CPU
socket. As such, the generated compression workload may
hinder or stall performance-critical applications such as
simulations that are running on the same host. Leveraging the
compression accelerator from the BlueField-2 SmartNIC

provides an opportunity to break the dependence of compression
performance on intensive computing resource occupation.

V. DATA PARTITIONING EXPERIMENTS

As a means of better evaluating the suitability of Apache
Arrow for processing particle data flows on SmartNICs, we
implemented a data partitioning algorithm used in LSM trees. In
this work, we used Apache Arrow to represent particles in a
tabular form that is suitable for transfer over the network and
leveraged Arrow’s filtering operations to split a table into
smaller tables based on particle IDs. We measured the amount
of time required to unpack, partition, and repack data for three
particle datasets from different communities to demonstrate the
flexibility of this approach.

A. Implementation

We constructed a C++ program that inspects and processes
in-transit data objects in network data flows. This program is
supplied with a contiguous-memory data object and is expected
to provide one or more contiguous result objects that are to be
sent to different locations. For this work we use Apache Arrow’s
IPC methods to handle transformations between a serialized
object that can be transported in the network and an in-memory
format that is suitable for tabular computations. The partitioning
algorithm examines a table and uses a small number of bits in
the particle ID field to determine which output table should hold
each particle. Although Arrow provides a group-by function that
would be useful for performing a split in a single pass, it is
currently limited to statistical operations. As such, we
implemented the partitioning as a multistep algorithm that
executes a select query to generate each table. While far from
ideal, this approach is acceptable in the LSM tree work because
of the low-fanout requirements of the distributed algorithm.

B. Reference Datasets

Three particle datasets were used in these to provide better
insight into the performance of the algorithm with different data:

• TrackML Particle Tracking Challenge (“Particles”)
[32]: CERN supplied a particle simulation dataset for a
machine learning competition hosted through Kaggle in
2018. This dataset contains 10 numerical fields per particle.

• OpenSky Network (“OpenSky Planes”) [33]: The
OpenSky Network collects worldwide ADSB information
for airplanes from volunteers. Entries contain 16 fields
composed of a mix of numerical and string values.

• NOAA Maritime (“Ships”) [34]: NOAA provides
historical AIS position data for ships near the US coastline.
Daily data was converted to a particle format that contained
17 fields composed of a mix of numerical and string values.

Given that the BlueField-2 SmartNIC operates with 16GB of
DRAM, we set a 1GB limit for the size of uncompressed data to
use in our experiments. We decompressed each dataset, selected
the number of rows that would be closest to 1GB in size, and
then recompressed the data to serve as input to the experiments.

C. Experiments

Performance experiments were conducted on a compute
node that features a 32-core AMD EPYC 7543P processor and

a BlueField-2 VPI card. In the first experiment, we measured the
overall amount of time for the host or SmartNIC to unpack,
partition, and repack the tabular data into 2 to 16 output
partitions. As depicted in Fig. 3, the host operates roughly four
times faster than the BlueField-2 when processing
uncompressed data. Increasing the number of partitions
increased the processing time in most cases. A closer inspection
of the Particles dataset revealed an ID address space issue that
resulted in a distribution imbalance. These issues can be
mitigated by hashing the ID or selecting ranges that are more
meaningful to the application.

Fig. 3. Overhead for partitioning without compression

Fig. 4. Timing breakdown for a 4-way split on the BlueField-2 using

different software compression methods

 The second experiment examines the impact of Apache
Arrow’s built-in software compression mechanisms on
performance. These tests vary whether the input and output
objects are serialized with no compression, LZ4 Frame
compression [35], or Zstd compression [36]. Fig. 4 provides the

timing breakdowns for unpacking, partitioning, and repacking
1GB of particle data when performing a 4-way split. As
expected, uncompressed data is significantly faster to read than
compressed data. Repacking the data, however, is similar in all
cases. This overhead highlights the fact that serialization by
itself is an expensive operation.

D. Discussion

While the host processors in this experiment yielded better
performance, it is important to note that the BlueField-2’s
embedded processors were performant enough to be of value in
many data flows. Scenarios where producers generate periodic
bursts of data are applicable, as the SmartNIC can absorb the
bursts and process the data before the next wave arrives.

Implementing the partitioning operation with Apache Arrow
highlighted its development advantages. Arrow’s well-reasoned
data primitives and existing support for serialization,
compression, and processing greatly simplified the
implementation effort. Our implementation worked with all
three datasets without modification, even though each dataset
had different data components and ID bitwidths. Although the
current version of Arrow does not have all the primitives of a
higher-level library such as Pandas [37], it contains adequate
primitives to implement a variety of operations.

VI. COMPRESSION EXPERIMENTS

As demonstrated in the previous section, converting between
on-the-wire and in-memory formats is an important and time-
consuming task for systems that process in-transit tabular data.
Given that the Bluefield-2 SmartNIC provides a compression
accelerator and multiple cores that Apache Arrow can leverage,
it is worthwhile to explore the different compression options that
are available for packing and unpacking data. We conducted
three experiments to answer each of the following questions: (1)
Is the compute overhead caused by software-based compression
significant enough to justify offloading the (de)compression to
hardware accelerators? (2) How does the throughput
performance of hardware-based compression compare with
software-based compression in a threaded environment? (3) Is
there a change in the compression ratio between the hardware-
and software-based methods?

A. Challenges

The BlueField-2’s compression hardware can be accessed
through the Data Plane Development Kit (DPDK) library.
Unfortunately, this library is highly tuned for network
operations and is organized around a packet-processing model
that can be cumbersome for other types of applications. We
faced several challenges in adapting DPDK’s compression
functions to process our Arrow data. First, individual data
packets have a maximum size of 64KB. To compress larger
amounts of data, developers must slice input and output buffers
into packet-sized segments and then generate a packet that
contains a list of compression commands for processing each
segment. Second, converting between contiguous and
segmented data representations can result in extra memory
allocations and copies that disrupt the throughput of the data
flow through the compression hardware. Optimizing the
pipeline requires a detailed understanding of both DPDK and the
hardware, and is tedious for users that simply want to

(de)compress large blocks of data. Third, embedded hardware
environments have limited resources. Therefore, recycling
resources after each compression operation (while still
managing errors) is extremely important. Finally, a single ARM
CPU core may not be sufficient for maximizing the performance
of the compression accelerator. As such, it is valuable to
construct a pipeline that pre-allocates memory and divides work
among cores as needed.

B. Implementation: Bitar

To simplify accessing the compression hardware for data

compression, we implemented the Bitar [38] library on top of

DPDK and Arrow. Bitar provides a convenient (de)compression

API and features zero-copy processing, synchronous and

asynchronous operation, and multicore/multidevice support. It

is specifically designed to operate without root privileges, which

is uncommon in DPDK-based applications. Bitar also allows

users to access the BlueField-2’s compression hardware from

either the host’s or BlueField-2’s processors.

C. Experiments

All experiments in this section were carried out on a
CloudLab [39] host that has two AMD EPYC 7542 CPUs (a
total of 64 cores), 512GB of DDR4 memory, and a BlueField-2
SmartNIC connected with PCIe 4.0 x16 lanes. Each experiment
was run on all three reference datasets with a maximum
outstanding data window size of 160MB due to memory
constraints imposed by DPDK and the pipelined nature of the
compression hardware.

Since Bitar has not yet been fully integrated into Arrow, our
experiments compress Arrow tables differently depending on
whether software- or hardware-based compression is measured.
The software-based approach relies on Arrow’s existing
compression mechanisms, which serialize and compress each
column independently before writing the final output buffer (i.e.,
“inner compression”). In contrast, the hardware-based approach
serializes the entire table and then streams the data through the
compression hardware (i.e., “outer compression”). While the
former is preferred, the latter is sufficient for network transfers.

1) Software Compression Overhead for a Single Thread:
Our first research question focuses on whether software-based
compression overhead is significant enough to justify hardware
acceleration. To answer this question, we constructed an
experiment that measures the amount of time for a single thread
to pack and unpack Arrow data in software using different
codecs. We intentionally excluded the memory allocation time
in this experiment given that it can be preallocated using
knowledge of historical output buffer sizes.

Fig. 5. Single-thread (de)serialization time with different codecs

Timing results for the Particles dataset (see Fig. 5) indicate
that (de)serialization without compression is efficient, thanks to
the zero-copy buffer design of Arrow’s IPC format. However,
involving either LZ4 Frame or Zstd compression introduces
significant CPU overhead and increases time consumption by
one to two orders of magnitude. We observed similar results
using the other two reference datasets. Given that compression
is a significant impediment to performance, we conclude that
acceleration is worthwhile in performance-sensitive
applications.

2) Throughput in a Threaded Environment: Our second
question focuses on how well the software- and hardware-based
compression methods perform in a threaded environment. One
advantage of Arrow is that it automatically parallelizes the
packing and unpacking of tables by dispatching each column’s
work to its own thread. In Bitar’s case, multiple threads can be
used to maximize the amount of work supplied to the
compression hardware. We conducted experiments to observe
how (de)compression throughput improves when scaling to an
optimal number of worker threads.

Fig. 6. (De)serialization throughput with different compression codecs and

degree of parallelism. Thick black borders indicate hardware

(de)compression results.

Fig. 6 shows throughput measurements for the “OpenSky
Planes” reference dataset. Without limiting the number of
threads in the experiment, both LZ4 Frame and Zstd used 35
threads during compression and decompression. In contrast, the
hardware compression throughput with Bitar was maximized
when using only two threads. Bitar outperformed the software-
based approaches in every case for this dataset. For software-
based compressions, LZ4 Frame performs better than Zstd in
terms of throughput. However, Bitar’s performance is better
than that of LZ4 Frame by 3.3x and 1.1x in the case of single-
thread and multithreaded performance, respectively.

Measurements for the other two reference datasets produced
similar results. The software-based approach was observed to
outperform the 2-thread Bitar configuration, but only in
situations where a wide dataset with many columns enabled the
host to leverage many cores (e.g., >35). Conservatively
speaking, the throughput of the compression accelerator rivals
that of a software implementation that consumes all the cores
of a modern CPU socket. Having the ability to (de)compress
data at near network speeds and with only a fraction of the
system’s available compute cores is essential for building
streaming data analytics. The results of this experiment also
highlight the performance scalability problem of using general-
purpose cores for (de)compression tasks, as throughput
depends on the number of columns in the data.

3) Impact on Compression Ratio: Our third question
focuses on quantifying how the compression ratio changes when
switching between different configurations of the software- and
hardware-based compression methods. The compression ratio is
computed by dividing the compressed IPC buffer size for a
particular configuration by the uncompressed IPC buffer size.
We expect the ratio to change in the Bitar hardware
implementation because (1) a different compression algorithm
is used and (2) the implementation applies compression on the
entire table instead of individual columns.

The compression ratios for different configurations are
presented in Fig. 7. Results listed for Bitar are presented for one
and two threads to illustrate that splitting the work into multiple
threads does not have a significant impact on output size. The
hardware-based compression using the DEFLATE algorithm
provides a compression ratio that is between that of the LZ4
frame and Zstd codecs in all three datasets. These measurements
confirm that offloading computations to the BlueField-2’s
compression accelerator does not result in a significant sacrifice
in the compression ratio.

Fig. 7. Compression ratios under different compression approaches

VII. SUMMARY AND FUTURE WORK

While current-generation SmartNICs are slower at
processing data than servers, they can perform fundamental
data-sifting tasks that are commonly required by different
workflows. The compression hardware is particularly appealing
for this work, as it provides a way to efficiently unpack, process,
and repack in-transit data products. However, the current
interface for accessing the hardware is challenging to leverage
and an obstacle for developers. We present Bitar as a reusable
library for simplifying compression on the BlueField-2 cards.

Apache Arrow provides a data model and a collection of
operators that are particularly well-suited for processing data on
eusocial devices. The tabular notation allowed us to devise a
general framework for storing and processing particle data that
did not need to be adjusted when switching between datasets.
Other types of data may not map to a tabular form as elegantly.

There are multiple paths forward from this work. Having
completed the on-card processing work we will transition to
network tasks related to distributing data between SmartNICs
and coordinating resource utilization across a distributed
system. Based on the TCP bottlenecks observed in previous
work, it is imperative that these operations take place with
RDMA primitives. For the compression work, Arrow will need
minor adjustments to allow it to more fully leverage Bitar. The
adjustments will allow Arrow to use hardware compression on
individual columns, thereby allowing finer-grained data access
by applications.

BIBLIOGRAPHY

[1] P. Kufeldt, C. Maltzahn, T. Feldman, C. Green, G.

Mackey and S. Tanaka, "Eusocial Storage Devices -

Offloading Data Management to Storage Devices that

Can Act Collectively," ;login: The USENIX Magazine,

vol. 43, no. 2, pp. 16-22, 2018.

[2] The Apache Software Foundation, "Apache Arrow: A

cross-language development platform for in-memory

analytics," 2022. [Online]. Available:

https://arrow.apache.org.

[3] J. Liu, C. Maltzahn, C. Ulmer and M. L. Curry,

"Performance Characteristics of the BlueField-2

SmartNIC," arXiv preprint arXiv:2105.06619, 2021.

[4] F. H. Harlow, "The particle-in-cell computing method

for fluid dynamics," Methods in Computational

Physics, vol. 3, pp. 319-343, 1964.

[5] T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas,

M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H.

Schmitz and A. Bell, "Contemporary particle-in-cell

approach to laser-plasma modelling," Plasma Physics

and Controlled Fusion, vol. 57, no. IOP Publishing, p.

113001, 2015.

[6] J. Derouillat, A. Beck, F. Pérez, T. Vinci, M.

Chiaramello, A. Grassi, M. Flé, G. Bouchard, I.

Plotnikov and N. Aunai, "Smilei: A collaborative, open-

source, multi-purpose particle-in-cell code for plasma

simulation," Computer Physics Communications, vol.

222, no. Elsevier, pp. 351-373, 2018.

[7] I. L. Picoli, P. Bonnet and P. Tözün, "LSM

Management on Computational Storage," in

Proceedings of the 15th International Workshop on

Data Management on New Hardware, New York, NY,

USA, 2019.

[8] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M.

M. Swift and T. Lakshman, "UNO: Uniflying host and

smart NIC offload for flexible packet processing," in

Proceedings of the 2017 Symposium on Cloud

Computing, 2017, pp. 506-519.

[9] G. Sabin and M. Rashti, "Security offload using the

SmartNIC, A programmable 10 Gbps ethernet NIC," in

2015 National Aerospace and Electronics Conference

(NAECON), IEEE, 2015, pp. 273-276.

[10] D. Vohra, "Apache avro," in Practical Hadoop

Ecosystem, Springer, 2016, pp. 303-323.

[11] B. Vaddeman, "Data formats," in Beginning Apache

Pig, Springer, 2016, pp. 201-208.

[12] P. Deutsch, "DEFLATE Compressed Data Format

Specification version 1.3," May 1996. [Online].

Available: https://datatracker.ietf.org/doc/html/rfc1951.

[13] T. Boutell, "Png (portable network graphics)

specification version 1.0," 1997.

[14] J. Mogul, B. Krishnamurthy, F. Douglis, A. Feldmann,

Y. Goland, A. van Hoff and D. Hellerstein, "Delta

encoding in HTTP," 2002.

[15] S. Hollenbeck, "Transport layer security protocol

compression methods," 2004.

[16] T. Ylonen and C. Lonvick, "The secure shell (SSH)

transport layer protocol," 2006.

[17] I. Cerrato, M. Annarumma and F. Risso, "Supporting

fine-grained network functions through Intel DPDK," in

2014 Third European Workshop on Software Defined

Networks, IEEE, 2014, pp. 1-6.

[18] Linux Foundation, "Data Plane Development Kit

(DPDK)," 2015. [Online]. Available:

http://www.dpdk.org.

[19] D. Vohra, "Apache parquet," in Practical Hadoop

Ecosystem, Springer, 2016, pp. 325-335.

[20] W. McKinney, "Introducing Apache Arrow Flight: A

Framework for Fast Data Transport," 13 October 2019.

[Online]. Available:

https://arrow.apache.org/blog/2019/10/13/introducing-

arrow-flight.

[21] R. Pindikura, "Introducing the Gandiva Initiative for

Apache Arrow," Dremio, 6 2018. [Online]. Available:

https://www.dremio.com/blog/announcing-gandiva-

initiative-for-apache-arrow/. [Accessed 12 08 2022].

[22] J. Pivarski, P. Elmer and D. Lange, "Awkward arrays in

python, c++, and numba," EPJ Web of Conferences,

vol. 245, no. 05023, p. 05023, 16 November 2020.

[23] J. Peltenburg, J. van Straten, L. Wjtemans, L. van

Leeuwen, Z. Al-Ars and H. Hofstee, "Fletcher: A

framework to efficiently integrate FPGA accelerators

with apache arrow," in 2019 29th International

Conference on Field Programmable Logic and

Applications (FPL), IEEE, 2019, pp. 270--277.

[24] RAPIDS Development Team, "RAPIDS: Collection of

Libraries for End to End GPU Data Science," 2018.

[Online]. Available: https://rapids.ai.

[25] S. Raschka, J. Patterson and C. Nolet, "Machine

learning in python: Main developments and technology

trends in data science, machine learning, and artificial

intelligence," Information, vol. 11, p. 193, 2020.

[26] P. Moritz and R. Nishihara, "Plasma In-Memory Object

Store," 8 August 2017. [Online]. Available:

https://arrow.apache.org/blog/2017/08/08/plasma-in-

memory-object-store.

[27] J. Chakraborty, I. Jimenez, S. Alvarez Rodriguez, A.

Uta, J. LeFevre and C. Maltzahn, "Skyhook: Towards

an Arrow-Native Storage System," CCGrid22, 16-19

May 2022.

[28] J. Chakraborty, C. Maltzahn, D. Li and T. Drabas, 31

January 2022. [Online]. Available:

https://arrow.apache.org/blog/2022/01/31/skyhook-

bringing-computation-to-storage-with-apache-arrow/.

[29] J. Nadeau, "Substrait: Cross-Language Serialization for

Relational Algebra," 12 08 2022. [Online]. Available:

https://substrait.io/.

[30] Apache Arrow, "The Apache Arrow Dataset Interface,"

2022. [Online]. Available:

https://arrow.apache.org/docs/python/api/dataset.html.

[31] J. Nadeau, "Scale by the bay 2019: Jacques Nadeau,

Vectorized Query Processing for CPUs using Apache

Arrow," 23 Dec 2019. [Online]. Available:

https://youtu.be/hLm duqB3Y4.

[32] S. Amrouche, L. Basara, P. Calafiura, V. Estrade, S.

Farrell, D. R. Ferreira, L. Finnie and N. Finnie, "The

tracking machine learning challenge: accuracy phase,"

in The NeurIPS'18 Competition, Springer, 2020, pp.

231-264.

[33] M. Schäfer, M. Strohmeier, V. Lenders, I. Martinovic

and M. Wilhelm, "Bringing up OpenSky: A large-scale

ADS-B sensor network for research," in IPSN-14

Proceedings of the 13th International Symposium on

Information Processing in Sensor Networks, IEEE,

2014, pp. 83-94.

[34] National Oceanic and Atmospheric Administration,

"Vessel Traffic: AIS Vessel Tracks," [Online].

Available:

https://coast.noaa.gov/digitalcoast/data/vesseltraffic.htm

l. [Accessed 12 8 2022].

[35] Y. Collet, "LZ4 Frame Format Description," 8 dec

2020. [Online]. Available:

https://github.com/lz4/lz4/blob/dev/doc/lz4_Frame_for

mat.md. [Accessed 12 8 2022].

[36] Y. Collet and M. Kucherawy, "Zstandard Compression

and the application/zstd Media Type," 2018.

[37] W. McKinney and others, "pandas: a foundational

Python library for data analysis and statistics," Python

for high performance and scientific computing, vol. 14,

no. Seattle, pp. 1-9, 2011.

[38] J. Liu, "Simplify accessing hardware

compression/decompression accelerators," 7 2022.

[Online]. Available: https://github.com/ljishen/bitar.

[39] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,

E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb and

others, "The Design and Operation of CloudLab," in

2019 USENIX annual technical conference (USENIX

ATC 19), 2019, pp. 1-14.

