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P Introduction

Recorded seismic data are generally contaminated by various types of noise (cultural or
natural).

= Despite significant progress in seismic data analysis, the separation of signal and noise
remains a fundamental problem.

* |n the seismology community, frequency filtering remain the most commonly used
method for noise suppression.

= Frequency filtering can be problematic when the signal of interest and noise occupy the
same region in the frequency domain.




P Introduction

We implemented and applied 3 classes of noise suppression methods using seismic data
recorded at local to near-regional distances in Utah.

= The methods consist of approaches based on:
o Non-linear thresholding of continuous wavelet transforms (CWT),

o Convolutional Neural network (CNN) denoising, and
o Frequency filtering (causal & acausal).

» The denoising approaches are compared by subjecting them to the same analyses and
level of scrutiny using the same set of evaluation metrics.
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Key Aspects of the Denoising Approach Based on the Thresholding of CWTs:
4 * Noiseis assumed to be stationary throughout the waveform
« Pre-event window is used to estimate the scale dependent (non-linear) threshold

Thresholding of Continuous Wavelet Transforms (CWT Denoising)

Soft-thresholding (+ hard thresholding):
The thresholded wavelet coefficients, W (a,t) are defined as:

W(ax) = {SEQH[W(& D](W(a, )| - B(a) if W(a,1)|2B(a),  (3)

0 otherwise

in which
gn[W = W(a,1) "
sign[W(a,1)] = W(ao] (4)
the threshold, B(a) = mean(|W(a,1)|) + cstdv(|W(a, 7)) (5)

+ Assuming noise coefficients follow Gaussian distribution (Donoho & Johnstone, 1994, DONO):

c =,/2logio N, (6)
with N being the number of noise samples at each scale.




/" Thresholding of Continuous Wavelet Transforms (CWT denoising)
74
7 « Seismic noise is rarely Gaussian. For that reason, Langston & Mousavi (2019) proposed
ordering the N noise values and then assigning a probability jump of 1/N when a value is
attained.
B(a) = ECDE; (P = 0.99), (7)
in which ECDE; 1 is the inverse empirical cumulative distribution function.
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Denoised (thresholded) waveform, X(t), is estimated using the inverse transform as:

O =" =W @oy(5) 5 ®)

a az '’

where

oo ' (@) P(@)
¢ = [ 2 40, (9)

in which (o) is the Fourier transform of ().
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Thresholding of Continuous Wavelet Transforms (CWT Denoising)
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Deep Learning Denoising (CNN Denoising)

‘4 . .
The approach uses a trained deep convolutional neural network (CNN) model to decompose
an input waveform into signal of interest and noise.
R(t, f) — S(t, f) + N(t, f) F Ncis:ﬁ;::km“k
Denoiser ’ P
s ~N e & 4 g *
N = 7
/Ms(t’f) i
Rt f)—F E I Sl
MN(tJ f)
3x3 ConvaD + RelU + BN (batch narm.)
\ ) 2 3x3 Conv2D + 2x2 stride + RelU + BN
R 6 3x3 Decomv2D + 2x2 stride + ReLU + BN + 30% Dropout
S(t, ) = Ms(t, f) O R(, f) {'\
ﬁ(t,f) — MN(tJf) O R(t,f)
*For an input R(t,f), the network provides a signal mask »The network consists of 20 hidden layers.

(Ms(t.f)) and a noise mask (M (¢.f)). =Half of the layers make up the encoder, and the other half

*The estimated ‘clean’ signal (S(t, f)) is obtained by the decoder.
multiplying Ms(t, f) with R(¢, f); and the estimated noise
(N(t, f)) is obtained by multiplying My (t, f) with R(¢, f).




/" Deep Learning Denoising (CNN Denoising)
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Effect of Input Seismogram Quality

» Evaluation based on constructed (noisy) data because the underlying

components (signa

ID=2249

(i)

ID&13150

Moisy Signal (Noise X 1)

SNR= 3.0 dB
SDR= 2.59dB
CC=0.80

Moisy Signal (Noise X 3

ATy

‘- A= |‘¢:
GRE -6,95 KB
€C=0.39

10 20 30 40 50 60
Time (secands)

(b) 26

(Y]
B
L

SNR after denoising (dB)

SDR (dB)

1 | I
W
(=1 (=] [=]

i

|
I
=

and noise) are perfectly known

2]
(=]
i

=
o
i

=
g
i

1 —e— cnn Denviser
7 —8— DONO Thresh.

| =@ BP Filter - Regular

—&8— ECDF Thresh.

== BP Filter - Zero Phase

o

T T T T T T T T T T
20 18 16 14 12 10 8 6 4 2

(=]
i

—8— CNN Denoiser

- =@ ECDF Thresh.

—8— DONO Thresh.

= =@= BF Filter - Zero Phase
=&~ BP Filter - Regular

20 18 16 14 12 10 8 6 4 2 0
SNR before deneising (dB)

(c)

1.0 1

0.8 1

Corr. Coeff.
o
o

=
'S
.

== CNN Dengiser
4 —8— ECDF Thresh.

=
8]

——
=&~ BF Filter - Zero Phase
| =e— BP Filter - Regular

DOMND Thresh.

o
=

T T T T T T T T T T T
20 18 16 14 12 10 &8 6 4 2 0

(e) 1e0

=8 ECDF Thresh.
=8 DONO Thresh, p
—8— BP Filter - Zero Phase
=&~ BP Filter - Regular

1204

g

Phase Shift (degrees)
o

O—.—H—.—.—.—.—.—.—-—.'-J

20 18 16 14 12 10 8 6 4 2 0
SNR before denoising (dB)

« For frequency filtering, the SNR of the
processed waveform decreases significantly
faster with decreasing SNR of the input
seismogram.

» Deep Denoiser is capable of denoising a
waveform with a SNR floor of approx. 0 dB.

« Causal filtering is associated with significant
changes in waveform shape (CC of ~ 0.7).

= CNN denoising has unrivaled capability of
conserving the amplitude information at
input SNRs > 7 dB.

« In contrast to causal filtering, zero-phase
filtering and the other methods do not

result in phase change.
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We processed 4780 constructed waveforms with components (signal & noise) recorded at

Improvement in Seismogram Quality

local to near-regional distances.
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Average improvements in SNR are ~5-10 dB, with
the lower value associated with frequency filtering
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= [n terms of preservation of both waveform shape and amplitude information, CNN denoising
outperforms both CWT thresholding and frequency filtering.
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» The average CC of ~0.5 for causal BP filtering indicates that waveform shapes underwent significant

changes.

. Denoised (CNN)
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L ike zero-phase filtering, little to no phase change occurs for CWT thresholding and CNN denoising.

»This contrasts to causal filtering that shows and average phase shift of -166°,




Onset-Time Determination

84.9% 83.7%
69.9%

60 ~

50 A

Percentage

40 ~
30 A
20 A
10 -

65.0%

51.8%

46.8%

l

CNN ANALYST BP

BP-ZP DONO ECDF

= CNN denoising allows more picks to be
made compared with other approaches,

and is on par with the expert analyst's best

filters.

» Most of the picks determined for each
method are consistent with the expert

analyst's best filters.
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P Conclusions

For all approaches the quality (SNR) of the output waveform is dependent on the input
SNR; however, for frequency filtering the output SNR decreases significantly faster with
decreasing input SNR.

= Onaverage CWT and CNN denoising, and bandpass filtering improve the SNR by about 10,
7 dB and 5 dB, respectively.

» |n terms of waveform similarity and amplitude distortion for the recovered waveforms
with respect to the GT seismograms, CNN denoising outperforms both CWT denoising and
frequency filtering.

= Also, the average correlation coefficient value is low for the seismograms processed with
causal frequency filtering, which suggests that these waveforms are different from their
respective GTs, i.e., significant changes in waveform shape have occurred.

» Like zero-phase filtering, little to no phase shift occurs for CWT and CNN denoising. This
contrasts to causal filtering that is associated with significant phase shifts.
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Implications

Purpose Zero-Phase

Denoising | Thresholding | Frequency
Filtering

Improve SNR

(e.g., for signal \/ \/ \/

detection) if input is of

sufficient

SNR (> 3dB)

Exploit amplitude

information / X X

(€.g., for magnitude, (most (significant (significant

yield or moment suitable amplitude amplitude

tensor estimation) approach) distortion) distortion)

Causal
Frequency
Filtering

v/

if input is of sufficient
SNR (> 3dB)

X

(significant amplitude
distortion, changes in
waveform shape &
phase)




Thank you for you attention




’ Evaluation Metrics
/

. Basid on constructed (noisy) data because the characteristics of their components (signal and noise)
are known

rd

‘4

= Comparison Metrics:
» Correlation Coefficient (CC)

o Measures the similarity between the recovered waveform and the ground truth (GT)

» Signal-to-Noise Ratio (SNRin dB)
o Using 9-sec window for both signal and noise

SNR =10log;o 2% (10)

N

» Signal-to-Distortion Ratio (SDR in dB)
o Measures the amplitude distortion with respect to GT

IWerll*
SDR =10 10g10 ||W—;:;T"2 (1 1)

W,r - Ground truth waveform; W - Recovered (denoised) waveform

» Phase change (¢ in radians)
b= 2nfot (12)
ot - Estimated time shift in seconds; f - Frequency set to 15 Hz (high-cut of chosen BP filter)
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/" Why Does CNN Denoising Outperforms Frequency Filtering
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» The values of the elements of the
mask operator vary with both time
& frequency in the range of 0-1.

» The operator for a bandpass filter
would appear as a streak of 1's
within the passband.

» The mask operator adapts to the
changing characteristics of the
input signal.




