
Enabling Catalyst Adoption in SPARC
V. Gregory Weirs

Sandia National Laboratories
Albuquerque, NM USA

vgweirs@sandia.gov

Elaine M. Raybourn
Sandia National Laboratories

Albuquerque, NM USA
emraybo@sandia.gov

Reed Milewicz
Sandia National Laboratories

Albuquerque, NM USA
rmilewi@sandia.gov

Killian Muollo
Sandia National Laboratories

Albuquerque, NM USA
kmuollo@sandia.gov

Jeffrey A. Mauldin
Sandia National Laboratories

Albuquerque, NM USA
jamauld@sandia.gov

Thomas J. Otahal
Sandia National Laboratories

Albuquerque, NM USA
tjotaha@sandia.gov

Abstract—This paper reports on Catalyst usability and initial
adoption by SPARC analysts. The use case approach highlights
the analysts’ perspective. Impediments to adoption can be due
to deficiencies in software capabilities, or analysts may identify
mundane inconveniences and barriers that prevent them from
fully leveraging Catalyst. With that said, for many analyst tasks
Catalyst provides enough relative advantage that they have begun
applying it in their production work, and they recognize the
potential for it to solve problems they currently struggle with.
The findings in this report include specific issues and minor
bugs in ParaView Python scripting, which are viewed as having
straightforward solutions, as well as a broader adoption analysis.

Index Terms—visualization, analysis, in situ, usability, adoption

I. INTRODUCTION

Almost every widely used product starts as an idea, goes
through a stage of development and prototyping to demonstrate
the capability or utility, and finally, goes through another stage
of development to make a usable product. The demonstration,
or second, phase addresses utility: the capability addresses a
need, and if they exist, is potentially better than the alter-
natives. The third stage, often called “the valley of death,”
focuses on usability and adoption. Usability means that a
user of the product can realize the capability provided by the
product. A user might say a product is “too difficult to use”
or “too complicated to understand,” to complete their task
to indicate barriers to usability. Even if a product provides
utility and is usable, it has to fit in the environment of the
user. Barriers to adoption include, e.g., metric wrenches when
the user has nuts and bolts in imperial units, or software that
does not run on the operating system of the user’s computer.
Viewed broadly, the lack of utility and usability are barriers
to adoption. Of course, many ideas start this process but far
fewer become widely used products.

In situ analysis and visualization for engineering and science
simulations on High Performance Computing (HPC) platforms
are in the demonstration phase. The primary capability is
that by generating analysis and visualization results as the
simulation is running, one avoids writing large simulation data
files to disc. On state of the art HPC platforms, file I/O is

relatively expensive and reducing the necessary I/O is highly
desirable. A secondary and perhaps under appreciated benefit
is automation. If the analysis and visualization steps are known
in advance and can be completed as part of the simulation,
analysts don’t have to postprocess the data their simulation
wrote to files. Uncertainty quantification and sensitivity anal-
ysis frequently involve large ensembles of calculations, and
automated analysis and visualization of the results is crucial,
even when postprocessing.

This paper reports our progress on the adoption phase for
Catalyst in SPARC. Sandia Parallel Aerosciences Research
Code (SPARC) is an engineering simulation code for fluid
dynamics, principally the flow around vehicles re-entering the
earth’s atmosphere [1]. Catalyst [2] is the in situ version of
the ParaView visualization application [3], [4]. The primary
user interface for ParaView is a Graphical User Interface
(GUI), and after reading simulation data files produced by
SPARC, the user interactively applies operations to the data to
produce visualization outputs. The user interface for Catalyst is
a ParaView Python script: ParaView commands are accessible
through Python modules and expressed in Python syntax.
The general workflow, as recommended by Kitware (the
developer of ParaView and Catalyst), is to first generate the
images desired in ParaView from an existing set of simulation
data files. Then the user can generate a ParaView Python
script from the ParaView GUI that captures the commands
that generated the images. This script can be interpreted by
Catalyst to generate images when invoked by SPARC. We
focus on this workflow and the ParaView Python scripts. Of
particular interest is understanding and editing the scripts,
because analysts want to generate an initial script on a small
simulation and use a modified script for a similar but much
more expensive simulation. We did not examine the usability
of the ParaView GUI or SPARC, except where they affect the
usability of Catalyst. We are also interested in the adoption
of Catalyst and ParaView for quantitative analysis, but in this
paper we only examine visualization.

ParaView is a mature software application with a large,
established user base. Catalyst has essentially the same utility,
so in this paper we focus on Catalyst usability and adoption.
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We chose an analyst driven, use case approach. Use cases are
concrete examples of typical tasks an analyst (Catalyst user)
would like to accomplish.

II. CODE INTEGRATION AND SUPPORT

A. Catalyst Integration Considerations

Based on our Catalyst SPARC integration experience, some
important factors to consider when integrating Catalyst with a
simulation code are:

• How to control Catalyst from the simulation input deck.
• How to link Catalyst to the simulation (dynamic run-time

library or direct link).
• Performance impact on the simulation, for example [5].
• Transferring simulation mesh data structures to Visual-

ization ToolKit (VTK) mesh data structures.
• DevOps infrastructure to build, deploy, and test Catalyst

with simulation.

B. Catalyst Integration with IOSS

The Input Output SubSystem (IOSS) library is part of the
Sandia Engineering Analysis Code Access System (SEACAS)
package from Sandia National Laboratories (SNL). Many SNL
simulation codes, such as SPARC, Nalu, and Sierra Adagio,
use IOSS to output files in Exodus II and CFD General
Notation System (CGNS) formats in parallel. The central
abstraction presented by IOSS is a database that encapsulates
details about how mesh data and associated variables are
written by a simulation code. IOSS is similar to the SENSEI
in-situ framework [6], in that it provides an interface between
the simulation and multiple analysis targets. The Catalyst inte-
gration in IOSS implements two new IOSS output types: one
for structured mesh output like CGNS and one for unstructured
mesh output like Exodus II.

Rather than writing to a set of files in parallel, the Catalyst
IOSS types convert the data to equivalent VTK data structures,
and then send the mesh data to Catalyst in parallel. Catalyst
runs a Python script that produces images, data extracts,
and analysis products. Catalyst runs in-situ, using the same
Message Passing Interface (MPI) ranks as the simulation code.

Simulation codes that use IOSS for writing simulation
data to files require minimal changes to send that data to
Catalyst. Furthermore, the Catalyst integration can be tested
independently of the simulation code by using test drivers that
feed input mesh data from files through the test suite.

Catalyst is a large code library that has varied build re-
quirements on different HPC platforms. For this reason, the
Catalyst IOSS databases use a split implementation. The IOSS
side provides an interface between the simulation and the
Catalyst IOSS database types. The Catalyst side resides in
a dynamically loadable plugin library (sometimes called the
adaptor) that converts the mesh data to VTK data structures,
and then calls Catalyst. Simulation code build systems do not
have to link against Catalyst libraries directly, which allows the
Catalyst portion to be built, tested, and deployed separately.
In this work ParaView 5.10.1 was used to create the Catalyst

scripts. IOSS provided Catalyst 5.10.0, which used Catalyst
API 1.0.

C. SPARC Integration with Catalyst IOSS

To enhance compatibility with SPARC analyst experience
using file based I/O to Exodus II and CGNS files, input deck
controls for Catalyst are implemented with a syntax parallel
to the file based controls. New Catalyst input deck blocks
use existing syntax for output frequency scheduling, variable
selection, and output database type. Minimal new syntax was
added to specify the Python script name and multiple mesh
inputs to the same Catalyst script.

The Catalyst IOSS plugin must be built, tested, and de-
ployed on all HPC platforms where SPARC is supported.
Project developers employ the DevOps tools Ansible-Tower,
Ansible, CDash, and CTest to meet this requirement. To
give analysts early access to new features in SPARC and
Catalyst, “advanced feature builds” are deployed on some
HPC platforms. These advanced feature builds were used in
the walkthroughs described below. In-situ technology is a
new capability for analysts. A robust DevOps process lets us
identify and fix issues and redeploy rapidly, which is crucial
for analyst adoption.

III. METHODOLOGY

A major challenge in the design and development of visu-
alization tools is ensuring that the product will be adopted
by real-world users and be practicable for their needs. As
noted by Fisher et al., a common stumbling block for the
visualization and visual analytics community is that tool
developers are often “not very consistent in articulating and
applying methodological principles for system design and end-
user evaluation” [10]. Insufficient rigor can lead to misunder-
standing users’ real needs or designing systems to solve the
wrong problems. For that reason, a key goal of our effort has
been to engage with prospective users directly and develop a
systematic understanding of their needs.

A. Theoretical Framework: Five Characteristics of Innovation

In this study, we applied the Diffusion of Innovations (DOI)
as a theoretical lens to investigate analysts’ experiences with
Catalyst in SPARC [8]. DOI theory, first pioneered by commu-
nication theorist and sociologist Everett Rogers in 1962, seeks
to explain how and why innovative ideas and technologies
are adopted and spread throughout a social system. In this
approach, how an innovation is perceived by prospective
adopters depends on different dimensions of perceived utility;
as explained by Rogers, “The characteristics of innovations,
as perceived by individuals, help to explain their different rate
of adoption” [9, pp. 15-16]. These characteristics include

• Relative Advantage: The degree to which an innovation
is perceived as better than the idea it supersedes.

• Compatibility: The degree to which an innovation is
perceived as being consistent with the existing values,
past experiences, and needs of potential adopters.



• Complexity: The degree to which an innovation is per-
ceived as difficult to understand and use.

• Trialability: The degree to which an innovation may be
experimented with on a limited basis.

• Observability: The degree to which the results of an
innovation are visible to others.

According to Rogers, “Innovations that are perceived by
individuals as having greater relative advantage, compatibility,
trialability, observability, and less complexity will be adopted
more rapidly than other innovations,” [9, p. 16], and “Given
that an innovation exists, communication must take place if the
innovation is to spread,” [9, p. 17]. What makes DOI theory
particularly useful is that it helps in navigating the trade-
offs between different dimensions of utility. For example, the
Catalyst capability may promote relative advantage through
code proximity (the ability of the visualizer to provide easy
and fast access to underlying source code, see [7]), but in doing
so this may also increase complexity until certain barriers to
adoption are addressed.

Thus DOI theory enables researchers to explore the in-
terplay of different innovation adoption drivers. Along these
same lines, DOI theory has previously been used to study
user adoption of data visualization and analytics tools in
diverse contexts including healthcare [12], education [14],
construction [13], and geospatial analytics [18].

B. Walkthrough and Content Analysis

Our Subject Matter Expert (SME) developed two image
generation use case workflows using ParaView, Catalyst, and
SPARC. The workflow steps constituted instructions to be fol-
lowed by analysts during a guided walkthrough interview. The
SME also performed a technical analysis, in which bugs and
usability issues were identified, while determining the steps
of the workflow. Three analyst interviews were conducted,
each lasting 60 – 90 minutes. In each interview, the analyst
followed the instructions for the workflow steps, and the SME
observed the analysts’ actions, answered questions, provided
explanations, and responded to feedback. A content analysis
was employed to analyze the video, audio, and transcripts of
the use case walkthroughs. Content analysis is a methodology
used to identify patterns in texts and can be quantitative,
qualitative, or both [15]. Rogers’ five characteristics of innova-
tions were used as categories to quantitatively code analysts’
statements from the interview transcripts. Six project team
members representing diverse scientific and engineering do-
mains independently coded each of the interviews by watching
the videos and matching the audio to the transcripts.

IV. RESULTS AND DISCUSSION

A. Use Cases

Two image generation use cases were designed to identify
specific usability barriers encountered while executing an in-
situ visualization workflow leveraging ParaView, Catalyst, and
SPARC.

The simulation for the first use case models the flow over
a blunt-nosed, axisymmetric vehicle at 10◦ angle of attack

Fig. 1. Use Case 1: Corner view of flowfield temperature on symmetry and
exit planes and heat transfer on the vehicle surface.

(AoA), traveling at Mach 5 at sea level. SPARC iteratively
solves for the steady-state, turbulent flowfield. This simulation
is inexpensive, the amount of data written is small, and while
images are produced throughout the simulation, only those at
the end of the simulation are needed. However, it includes
all the realism needed for investigating Catalyst usability and
adoption. Images of the flowfield temperature are produced on
the symmetry and exit planes of the simulation. The symmetry
plane is the xy-plane through z = 0, and the exit plane is the
yz-plane at the maximum value of x. A third image shows
the heat flux on the vehicle surface, and the fourth image,
shown in Fig. 1, includes both planes and the surface. SPARC
analysts regularly produce images like these as a first look to
confirm the simulation ran as expected, and then to identify
any important flowfield structures.

The second use case is a large eddy simulation (LES) of
the flow over a cone at Mach 8 at 6◦ AoA. This simulation
runs on 100 nodes of an ASC CTS-1 machine; it is a modest
calculation by current LES and supercomputing standards, but
large enough that analysts limit how frequently they write the
flowfield solution to disk. In Fig. 2, a contour surface of the
Q-criterion identifies resolved vortical structures, and coloring
the contour surface by temperature is useful for understanding
heat transfer to the cone surface. The symmetry and exit planes
display the gas density from a different simulation, stored in
files and read by Catalyst during the LES simulation.

B. Technical Findings

Technical findings are defined in the present paper as
specific issues or recommendations identified by the SME or
interviewees for ParaView, Catalyst, and the ParaView Python
scripting interface.

ParaView has different classes of objects. Filters are pro-
cessing units assembled into a pipeline. The output of each



Fig. 2. Use Case 2: Isocontour of Q-criterion colored by temperature (labeled
as “primitives 4”) from LES, with steady state density (log scale) on symmetry
and exit planes.

filter may be displayed, as defined by its representation. A
view composes the image from the active representations it
contains. Extractors, or extracts, were added in version 5.10.0,
and describe file output; data extractors save the output of a
filter, and image extracts save the image in a View.

The scripts generated by the ParaView GUI are verbose and
difficult for the analyst to understand. There are many lines
specifying the properties of representations and views, and
many of them are not necessary to include. Either the user
has not changed the property values from their default values,
or that property was not needed to make the image. Many of
these properties are set by the user indirectly, such as through a
mouse or widget interaction, and the associated property is not
familiar to the analyst by the name in the script. Consequently
the analyst may be uncertain about which representation and
view properties are necessary, so they are hesitant to edit or
delete them.

The scripts generated by the ParaView GUI embed speci-
ficity of the dataset in a way that is difficult for an analyst
to identify. For example, in the color lookup table, the data
value and the corresponding 3-tuple defining the color are
just appended together in a Python list, with no structure to
distinguish the value from the tuple or one value-tuple pair
from another. To rescale the color table to different minimum
and maximum values, an analyst would have to recognize the
structure from the values in the list, then recompute each data
value and edit the list appropriately. It would be much easier
to just specify the color table for a value range of, say, 0 to
1, and have Catalyst compute the corresponding values given
user-specified minimum and maximum values, as the analyst
would do in the ParaView GUI. There are many places in the
script like this, though the color lookup table is particularly
difficult to edit. As a reminder, easy modification of the scripts

to apply to a different dataset is crucial, because the benefit of
in situ analysis is only realized when applying it to simulations
that have not yet been run.

Another issue is that some properties recorded in the Cata-
lyst script are not intuitive. For example, the view properties
that specify the camera’s location and orientation are easy to
identify, but it is difficult for an analyst to know how to adjust
the values to get the updated image they desire. In ParaView,
these parameters are accesible but rarely displayed – instead,
the analyst updates the view by using the mouse, seeing the
effects but not the actual values of the camera properties.

The scripts generated by the GUI are best thought of
as “journal” files that record the necessary information to
regenerate the output image or data file, rather than a clear
description that leads to easy understanding and adaptation to
a different data set. Fortunately, the issues identified in the
GUI-generated scripts have straightforward solutions, and we
are working developers at Kitware to address them.

C. Usability and Adoption Findings

Usability and adoption findings were developed by perform-
ing a content analysis on the walkthroughs with analysts. Two
hundred and ten unique statements made by three analysts
during the interviews were identified across the image gen-
eration use cases. Each statement was then categorized into
only one of the five characteristics of innovations by each
coder [15]. Across the six coders, we used Cohen’s Kappa
[16], [17] to measure pairwise intercoder reliability (0.2238
average unadjusted). Intercoder reliability was calculated by
taking the average pairwise kappa among the six coders based
on whether or not they coded a statement, irrespective of
how they coded the statement. A common discrepancy among
coders was that while some coders labeled each statement
at the beginning, others labeled statements at the middle or
end. Therefore to compensate for this irregularity, we adjusted
the kappa by grouping statements with those before and
after (0.3276 adjusted). Additionally, while three coders were
aligned in their coding schema (0.3641 unadjusted, 0.4181
adjusted) suggesting moderate agreement, others were not as
well-aligned, resulting in lower kappa scores overall for the six
coders due to the misalignment. Agreement among six coders
was fair (0.21 - 0.40). Kappa scores were lower than desirable,
but still within acceptable limits.

We employed Friedman’s test to determine whether any of
the five innovation characteristics were consistently labeled
more frequently by different coders [19]. This test yielded a
p-value of 0.00027, indicating that there are innovation char-
acteristics consistently rated higher than others across coders.
Next, we used the post-hoc Friedman-Nemenyi test to measure
which pairs of innovation characteristics were significantly
more or less frequent relative to each other [20]. The test
revealed that Relative Advantage is consistently coded more
frequently than Observability (p=0.036466), and Compatibility
more frequently than Observability (p=0.00100).

Table I illustrates the number of unique statements (210)
that were coded in each of the characteristics of innovations



TABLE I
CODED FREQUENCIES OF DOI CHARACTERISTICS USED IN THE

QUALITATIVE ANALYSIS OF THE FLOWFIELDS AND LES USE CASES.

Innovation Characteristics Flowfields Use Case LES Use Case

Relative Advantage 24 7
Compatibility 51 26
Trialability 33 9
Observability 6 2
Complexity 41 11

Total Number of Codes Applied 155 55

categories. Fewer analysts’ statements were coded for the char-
acteristic Observability; this was not surprising since Catalyst
has only been deployed in SPARC as a beta capability, so
the analyst community is not familiar with it. Additionally,
in each use case, analysts’ statements offered support for
relative advantage with respect to data manipulation through
testimonials such as, “Yeah, so I can see myself using this
immediately for some of our cavity works that we work on.”
and “Yeah, it seems quite useful right out of the box.”

While not depicted in Tab. I, 48 usability barriers were iden-
tified from 41 analysts’ statements. In seven of the analysts’
statements, more than one coder identified different usability
barriers for the same statement. Our findings indicate that
some analysts’ statements corroborated the technical analysis
performed by the SME, for example, with respect to color
lookup tables being impractical to modify directly in both the
flowfield and LES image generation use cases. When asked
by the SME, “Do you think you could write that part yourself
without the GUI?” an analyst performing the workflow steps
for the flowfield use case stated, “We didn’t change the color
map for this but if we had to I don’t know that I would
be able to do that by hand.” Another added, “I would say
there’s a difference, right, between editing a script that’s there,
and creating it completely from scratch.” When asked by the
SME “What else do you see in here or what do you think
about the process we went through? ... Is this tractable?”
an analyst executing the steps for the LES use case stated,
“Some components of it, I think you’re right where it would
be more valuable to be able to dig into the Python script.” It
was observed that there appeared to be a lack of intuitiveness
of GUI visual elements in the Catalyst script, and in the case
of LES, understanding, editing, or modifying image-specific
parts of the Catalyst script was difficult.

With respect to adoption, applying Rogers’ Innovation Char-
acteristics to our use cases confirmed that SPARC analysts saw
the value of Catalyst for their work (relative advantage), and
that it could be easily incorporated in their existing workflows
(compatibility). The factors limiting adoption are complexity,
associated with difficulty understanding and editing Catalyst
scripts produced from the ParaView GUI, and observability,
which we believe can be addressed by documentation, exam-
ples, training, and direct engagement with analysts.

Our research was exploratory in nature, and as such prone to
limitations. For example, the findings of the present study are

specific to the particular uses cases and the dataset was small.
Intercoder agreement should also improve as we engage in
further data collection and align our coding practices.

V. CONCLUSION

Catalyst in SPARC is entering the adoption stage for ana-
lysts in a production environment. Building on several years
of effort, Catalyst is now integrated into SPARC in its parsing,
simulation data transfer, and broader software engineering
processes. This foundation permits developers to give more
attention to usability and adoption.

We found that in practice, the Catalyst scripts generated
by the ParaView GUI are journal files – they are effective
for repeating an existing analysis, but they are difficult for
Catalyst users to understand and modify for new analyses. For
image generation tasks, the scripts are verbose and information
specific to the original dataset is embedded in such a way
that it is hard to find and modify. However, we believe
straightforward solutions to these issues can be found and
implemented, and we are working with Kitware to that end.
For some information in the scripts, such as the specification
of camera properties and color tables, the ParaView GUI or
other tools may provide the best mechanism for the analyst to
specify what to include in their Catalyst script.

Through our UUA analysis, with respect to compatibility
(one of Rogers’ five characteristics of innovation), we con-
cluded that analysts in our walkthroughs focused on deter-
mining how Catalyst would fit in their existing workflows.
With respect to observability, we are using these preliminary
results to guide our efforts to build a user community. We have
deployed the workflow recipes on the SPARC Analysts’ wiki
to address some of the barriers identified by users such as the
need for documentation. Our UUA results are exploratory, but
have given us insights into the process of addressing usability
barriers and technology adoption by directly engaging with
the analysts for whom Catalyst was designed.
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