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Intervalence Charge Transfer and Electronic Conduction

“We may consider mixed valence chemistry as the conceptual link between coordination chemistry and solid state physics.” - Andreas Ludi
Ludi, A. Descriptive Chemistry of Mixed-Valence Compounds. In Mixed-Valence Compounds: Theory and Applications in Chemistry, Physics, Geology, and Biology, Brown, D. B. Ed.; Springer

Netherlands, 1980; pp 25-47.
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What is the relationship between redox state and electronic conductivity in mixed-valence

materials?
Co(lll/IV)

2 x=070 /%7055 Phase Transition
Example. LiXC002 ____.ﬂ-/_-.“ e e S— :

']
FEFRAEEE B W BE B

‘1 — m----.. T EE YT ,P\l
Nx=0.60 I

5

I
s 1 Big Picture Question m
I

= AN
- x=0.94 i _
= 1 7 1 * [ x=0.70
Tﬁ E 1 \. I ‘____/;.' | \\~—-_._._ -
m L il&....,._ . :

T 1 " 2F e /f{\_x X=0.75

] B x=096 — /7

= 3 3 / fﬂi

H
a | / i’\,l'-\ x=090
- SN T

CO(”/I”) 4r j|| ':lll'lh
| | SR AL
~l X =098 i
Co(lll) . 2N ) x=10
ﬂ L 1 - T
6 x='1,{]'1,CO ”I . I s 1 . ]
1 12 14 1.6 L. ( .) R S 18.0 18.5 19.0 19.5
¥ im LI, Coly 4 8 312 16 20 20, /degrees
10°K/ T
Carewska, M.; S Scaccia, S.; Arumugan, S.; Wang, Y ; Menetrier, M.; Saadoune, |.; Levasseur, S.; Delmas, C. J. Mater. Chem. 1999, 9, 1135.

Greenbaum, S. Solid State lonics, 1997, 93, 227.



‘ Electrochemical Random Access Memory (ECRAM)
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Fuller et al., Adv. Mater. 2017, 29, 1604310.
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Design 3-terminal, 2-terminal 3-terminal, electrolyte
« ECRAM combines principles of bulk charge dielectric
storage with electrochemical transistor Switching Field effect Phase-change, Electrochemical doping
operation. mechanism conductive filament (electron transfer, ion
insertion)
» Stored charge - stored conductance. Changes to Localized near  Localized at phase- Homogeneous I
_ channel interface change regions
« Conductance change represents synaptic conductivity
weight update. Timeline: 1940s 1960s 2017
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Practical Motivation: Analog Circuits for Neuromorphic Computing

Problem: Conventional hardware for driving neural network computations (CMOS integrated circuits) are inefficient.

Solution: New concepts for all-analog computation.

* Physical neural networks: Atrtificial neurons, artificial synapses
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Reducing Data Transfer to Improve Vision Sensor Response Time
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Ruthenium Prussian Blue Analogue (RuPBA)

* Ruthenium Prussian blue analogue (RuPBA) has the highest measured

DC conductivity and lowest IVCT energy of the PBA family.
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* Molecular analogues exhibit Class II/Ill properties

(localized-delocalized transition).



‘ RuPBA ECRAM Device Fab/Architecture
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g ‘ Steady State Transfer Characteristics

ECRAM Device Channel

Gate lonogel Channel
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9 ‘ ECRAM Device Performance
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10 ‘ UV/Vis/NIR Spectroscopy
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‘ Spectroscopic Insight into Conductlon Mechanism
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12 ‘ Mechanism: DFT Computation
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2.5 7.269 7.293 10.334 1.26 0.98 0.70
2.25 7.415 7.217 10.295 0.50 0.10 0.41
2 7.543 7.038 10.180 4.29 4.29 0.52

* Li;Ru,[Ru(CN).], predicted to have a hole mobility of 5 cm V-'s-1,

compared to 4 cm V-1 s*! determined spectroscopically.
Robinson, et al. arXiv preprint 2022, [DOI: 10.48550/arXiv.2207.07756]
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Challenges Going Forward
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« Activation energy is relatively low
for a PBA, but ~10x higher than

predicted.
e Charge transfer at grain

boundaries likely requires larger

activation energy than in bulk.
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14 ‘ Conclusion

* New potential application for extended coordination compounds such as PBAs in neuromorphic

computing via ECRAM.

* Working hypothesis for nearest-neighbor and cross-pore IVCT pathways involved in electron hole

concentration and mobility, supported by DFT and electron transfer theory.
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