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4 Glass-ceramic to Metal Seals (GcTMS)
4

*Variety of industrial applications for glass-ceramics
oHermetic glass-ceramic to metal seals (GCTMS)

oSubject to complex thermomechanical histories

NL16 GC Quench Study
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o Glass-Ceramics - Microstructure

i
/" e Glass-ceramics are produced by inducing a ceramic phase(s) in an

inorganic base glass

- Advantageous features arise from microstructure
oUp to 5 constituents

olnelasticity from residual glass and silica polymorphs
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P/ Objective

- Understanding actuation response essential for intended use

* Actuation not well understood experimentally or modeled
o Experimental studies focused on other features (e.g. dilatometry, DMA)

oModels leverage alternative phenomenologies

* Objective: Elucidate and enhance understanding of actuation response
o Perform first of the kind experiments to characterize thermomechanical response

o Develop new model capable of describing coupled phase-transformation and
viscoelasticity




P/ Experimental Set-up

* Experimental challenges: —
o Thermal homogeneity Heat Shield

Load Cell

o Precise strain measurement o -

oHigher loads o f
crcha {

- Developed novel —— g

thermomechanical test Sample

chamber Aluming Open L

o Novel extensometer and stage L9

design Fused Quartz Rod

for Extensometer

o Clamshell furnace

Cylinder Fixture / Heat Shield
/ Extensometer Mount

Extensometer

Alignment Fixture

Actuator  —»
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/ Experimental Thermal Control
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P Experimental Results

* Obtained thermal strain 0.008
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Experimental Observations

F

2 Able to obtain stress and thermomechanical dependencies of GCs for first
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Glass-Ceramic Model

* Seek macroscale representation of glass-ceramics via use of internal state
variable/continuum thermodynamics theory
o Thermoviscoelastic theory for response of glass

o Utilize shape memory alloy (SMA) theory as basis (Lagoudas model) for phase
transformations

o Details in Lester and Long, 2021, Mech Mat., 158, 103849
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P Calibration and Exp. Simulation

* Fit transformation terms to new actuation data
* Viscoelastic data from prior study
* Good agreement between experimental and simulation results observed
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/" Example Problem - Simple Seal

 Simple seal used as representative example problem
o Common test for prediction and measurement of residual stress

o GC Seal enclosed in concentric metal (stainless steel) shell

o Cooled from above Tg to RT

Glass-Ceramic

Volume averaged hydrostatic stress
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P Summary and Conclusions

* Actuation behavior of glass-ceramics explored for first time
oNovel thermomechanical test chamber

oNew coupled constitutive model

* Have first measurements of stress dependence on different behaviors
o Preparing second set of experiments to elucidate additional phenomenology

o Used for updating model form

* Thermomechanical model demonstrated on representative problem
o Examines coupling between different mechanisms

o Essential tool for examining performance of engineered product
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/7 Numerical Implementation

/4 . . . :
" +3D numerical implementation formulated and implemented
oSierra/SolidMechanics FE code constitutive library (LAME)

oFully implicit integration, line-search augmented Newton-Raphson
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/7 Impact of Heating Rate

oWLF-Lag at different cooling rates
oWLF cooled at 2 K/min

: 0 0 _ =
oPurely volumetric flow rule 71 =0, 72 =7
Hydrostatic stress along top seal surface
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/"« Investigate simple seal with multiple shift factor

Volume averaged hydrostatic stress
through cooling
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* Impact of both viscoelastic and transformation mechanisms may be

observed

Lester and Long, 2021, Mech Mat., 158, 103849 n



