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Research Interests: Energy Flows in Plasma
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Magnetic Reconnection: field lines break and reform
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Magnetic Reconnection: theory predicts slow rate
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Prediction: 1000 yrs. Reality: 10 minutes!
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Plasmoids Lead to Fast Reconnection and Anomalous Heating

Current| ' | Multiple O Strongly
sheet (| | current<(() sheared
B B 1 sheets flows
O
/ ]\\ [\ Overview of recent theory:
v Loureiro, N. F., & Uzdensky, D.
A.(2015).

PPCF, 58, 014021
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Research paths/talk outline e
Radiatively cooled reconnection on Z

Magnetic More current = —| .
reconnection / WL
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An exploding wire array: a versatile plasma source

1I=1.4 MA, 240 ns rise time
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Magnetic Reconnection from Double Exploding Wire Arrays

Reconnection X Wi Central
Layer = Conductor

Hare et al PRL 2016, PoP 2017, 2018 jdhare@mit.edu, HEDSA Symposium 2022 9



Overview of Diagnostic Suite on MAGPIE at Imperial College
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Diagnosing reconnection in the laboratory

Laser interferometry: Faraday Imaging: Thomson scattering:
[ n.dl [n,B -dl V,ZT,,T;

-1 Polarisation angle [a] (°) 1
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Anomalous Heating in the Reconnection Layer

VinLh(Emag + Ekfn + Eth,i + Eth,e) ~ Voutgh(Ekm + Eth,i + Eth,e)
ﬁ ~50% ~25% ~25% ~40% ~60%

30

-Pmag D-Pkm .-Pth,z' .-Pth,e

Classical heating
. is too slow:

~ 50 ns

~ 800 ns
~ 350 ns

Texp K Tyisc: Tres

Power in Power out

Hare et al, PRL 2017, PoP 2017, PoP 2018
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Magnetic Structure of Plasmoids
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What does a plasmoid look like in 3D?
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Kink Instability Leads to Turbulent Reconnection

Turbulent reconnection over a large volume,
as observed in astrophysics

Z >,

Kink unstable

(27 < plasmoid
Lrﬁ

« -
x‘7 Lapenta, G., and L. Bettarini. EPL 93, 6 (2011)
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Hints of a kink instability on MAGPIE

Current Sheet at 301 ns

a) Position b) Areal densit
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Current Sheet at 301 ns
a) Position b) Areal density

1>
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Open questions:

* How do the reconnection layer dynamics scale with current?
* \What other instabilities can grow on Iong timescales?
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Research paths/talk outline e
Radiatively cooled reconnection on Z

Magnetic More current = —| .
reconnection / WL
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Longer current S e
pulse Supported by the NSF and NNSA
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Reconnection in Extreme Astrophysical Environments
Artst’s impression of a black hole M87 (EHT) Crab Pulsar (Hubble/Chandra)

1. Coolingis a significant loss mechanism:
* Modifies partition of magnetic energy between electrons, ions, kinetic
* Leads to cooling instabilities, radiative collapse, termination of reconnection

2. X-rays: key observational signature in remote environments:
 Where and when are X-rays produced — localized bursts?
 How does this couple back to the reconnection process?
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Radiative Cooling Instabilities in Reconnection

Layer Layer
radiates compresses
Ar T, P, drop 1 Uzdensky & McKinney PoP 2011
— > & « Layer ohmically heated
P, 1 » Layer radiatively cools
t

Layer compresses

\J « Layer radiates more
Runaway process

/
A

-

n, Prad rise

jdhare@mit.edu, HEDSA Symposium 2022 20



MARZ: Reconnection on Z

Z is the largest pulsed-power machine in the world

« 20-30 MA peak current compared to 1.4 MA on MAGPIE:
- Density increase by I? ~ 400
- Magnetic energy increase by I? ~ 400
« Cooling rate increase by I* ~ 160,000

Unique capability: strongly radiatively cooled reconnection

\ " ; / J Requires more mass in load:
Lo }r Y *% # L | = e 16 - 150 wires/array
_ il | —— e 40 Mm —> 75 Mm wires
-y, s y * 16 mm - 40 mm arrays
-
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GORGON MHD simulations , &

GORGON (J. Chittenden, Imperial) : 3D Eulerian resistive MHD code with several
radiation loss models and separate ion and electron energy equations

Xyl2: Rp =20 mm, D =30 mm, d, =75 um, Ny, =150, Iy =20 MA, M;zq = 13020

Wires:

150 Al wires

* 75 um diameter
Arrays:

« 40 mm diameter

« 20 mm gap

1019

1013

nj [cm™3]

101]"

1015

—60 -40 -20 0 20 40 60
X [mm]

* 2D sims: 50 um resolution, 180x90 mm. 16 hrs, 256 cores

. . 1/2 - -
* Recombinationloss: Prgq = MyqqCrne T, /2(7220,EZ1)T,), with Mygq ~ 3
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Plasmoids and Collapse G
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Plasmoids and Collapse

250 ns 280 ns 400 ns Lundquist number:
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Load Hardware for the first MARZ shot
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Load Hardware Post Shot G

Weeks to build, a microsecond to destroy!
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Magnetic Probe Measurements: Plasma Flow
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Magnetic Probe Measurements: Plasma Flow
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Bow shock around B-dot probe: Plasma Flow

T-probe
(14mm /o
from wires) .
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Bow shock around B-dot probe: Plasma Flow , &

z3697 SEGOI Shot - Frame 4 GOI1

0 11 12 13 14 156 16 17 18 19
Distance from wires (mm)
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Time Integrated X-ray Spectrum: Hot Plasma
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Filtered Diode Sighals: Layer Formation, Collapse

Experiment Simulation
MARZ z3697 Current & Emission GORGON + XP2 Simulated Current & Emission
20k Total current (1.07 * BCAVE) o0k Total current (sin2)
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_ 157 157
< <
=, =,
T Al T Al
o 10 10x (volts) o 10
-} >
) )

5f 5

0 0

2750 2800 2850 2900 2950 3000 3050 3100 3150 3200 2750 2800 2850 2900 2950 3000 3050 3100 3150 3200
Time [ns]

Time [ns]

« Radiated power rises after current start, drops before current peak

« X-ray spectra appears softer than simulated: more shots in December
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PUFFIN uses 2 LTD5 stages from SPHINX (CEA Gramat)

Vacuum chamber

— Capacitor

1\‘ 4___———?'
46¢cm Alem
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Trench capacitor
4uF; 10nH; 15m€

Grounded box enclosing :
2 switches

1 magnetic core

1 vacuum msulator

Vacuum line
Dout.200mm. gap 20mm
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PUFFIN 2x1 will drive around 600 kA with a 1.5 pusrise time  “ige

Vacuum chamber

— Capacitor

Vacuum __Axial probing

line

(.8) W T
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Insulator
stack

transmission line

40 kJ energy to load
First plasma in 2023
puffin.mit.edu
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PUFFIN 2x1 will drive around 600 kA witha 1.5 ps rise time  “ige

Critically matched load resistance minimizes reverse voltage, but also peak current

Vacuum __Axial probing
line

PUFFIN 2x1: 70 kV, Load: 55 mQ, 10 nH
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Construction underway, first plasma 2023! , &
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Summary

Unifying theme:

Radiatively cooled l . |
reconnection on Z energy 1iows In plasmas
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