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Magnetic Reconnection
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Magnetic Reconnection
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Plasmoids Lead to Fast Reconnection and Anomalous Heating
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Reconnection in Extreme Astrophysical Environments
Arist’s impression of a black hole M87 (EHT) Crab Pulsar (Hubble/Chandra)

See: Uzdenksy in “Magnetic reconnection: Concepts and applications” arXiv:156 10.05397 (2016)
1. Coolingis a significant loss mechanism (7,50 < T4):

« Modifies partition of magnetic energy between electrons, ions, kinetic

» Leadsto cooling instabilities, radiative collapse

2. Radiation: key (only?) observational signature in remote environments:
*  Where and when are X-rays produced - localized bursts?

*  How does this couple to the reconnection process? (Plasmoids: localized cooling)
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Radiative Cooling Instabilities in Reconnection
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« Layer ohmically heated,
radiatively cooled

« Layer radiates,
compresses, radiates
more: runaway process



Pulsed-power-driven Magnetic Reconnection
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Magnetic Reconnection from Double Exploding Wire Arrays
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Exploding wire arrays in parallel:
« Sustained flows (Tgyipe ~ 10 T4)

* Quasi-2D geometry
 Collisional (§ > A7)

* Inflows: pep ~ DB ~ Pkin

* No guide field

MAGPIE: 1.4 MA, 250 ns rise time
Z Machine: 20 MA, 300 ns rise time

n«I? Pgq xn? «I*

Z’s unique capability: strongly
radiatively cooled reconnection



GORGON MHD simulations , &

GORGON (J. Chittenden, Imperial) : 3D Eulerian resistive MHD code with several
radiation loss models and separate ion and electron energy equations

Xyl2: Rp =20 mm, D =30 mm, d, =75 um, Ny, =150, Iy =20 MA, M;zq = 13020

Wires:

150 Al wires

* 75 um diameter
Arrays:

« 40 mm diameter

« 20 mm gap
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* 2D sims: 50 um resolution, 180x90 mm. 16 hrs, 256 cores

. 1/2 - -
+ Recombination loss:  Prgq = MyqqCrne T *(Z20;EZ7Y/T,), with M,qq ~ 3
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Plasmoids and Collapse

250 ns
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400 ns * Flows collide at mid-plane

* Plasmoids move within layer

* Inflow density rises with current

* Radiative cooling rises with density

* Thermal pressure removed:
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Plasmoids and Collapse
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Pressure balance in the layer

Pre-collapse: flux pile-up decelerates flow
At layer, Pg = Py,

a) Pressure balance at 250 ns

Ma=1 Ben=1
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Pressure balance in the layer

Pre-collapse: flux pile-up deceleratesflow  Post-collapse: fast diffusion in cold,
At layer, Pg = Py, resistive plasma removes flux pile-up

a) Pressure balance at 250 ns b) Pressure balance at 400 ns

Ma=1 Ben=1

101[} 3

Pressure [Pa]

= Pth =neTe + NiTi = Pyip = pV2Z/2
= Pg =BJ/2uq = Pot
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Plasmoids in the Reconnection Layer
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Plasmoids in the Reconnection Layer
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Plasmoids in the Reconnection Layer

Plasmoids:

* Carry a lot of current

* Are hot, with low n
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Plasmoids in the Reconnection Layer
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Are hot, with low n
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3D GORGON simulations: kinking plasmoids

Plasmoids kink...and generate out-of-plane magnetic fields

Surfaces of high

current jdhare@mit.edu APS DPP 2022 Reconnection = e coe 19



Kink instability generates out-of-plane velocity

Kink instability generates
vertical flows: potential

1000405 spectroscopic signature
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Conclusions
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Radiatively cooled magnetic reconnection is relevant to extreme astrophysical
environments

2D (and 3D) simulations show hot, dense, strongly radiating plasmoids

In 3D, plasmoids are kink unstable, generating out-of-plane fields and flows

Using XP2, we can post-process simulation data to model synthetic diagnostics
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