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Background - SNF and SCC
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Background -SNF and SCC
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Environment — Brine formation
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What about factors
influencing/governing

pm—— morphology?

— Bryan, C. R., Knight, A. W., Katona, R. M., Sanchez, A. C,,
Schindelholz, E. J., & Schaller, R. F. (2022). Physical and

chemical properties of sea salt deliquescent brines as a

function of temperature and relative humidity. Science
0 ] 1 1 1 L of the Total Environment, 824, 154462.
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Environmental Influences
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Why care about pitting?

Transition Model

Pit to crack transition

Pit — stress/strain concentrator

Max Principal Stress

—

Kondo criteria

3, Max. Principal Fatigue Crack
(hve. Coit.: 75%)

Ero E. Cathode: area with radius r.

Corrosion Pit

Growth Rate

o

el e R O Bt T 1

Maximum pit model

Chen, Z. Y., & Kelly, R. G. (2009). Computational modeling of bounding conditions for pit size on stainless steel in atmospheric environments. Journal of the Electrochemical Society, 157(2), C69.

Turnbull, A., Wright, L., & Crocker, L. (2010). New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit. Corrosion Science, 52(4), 1492-1498. 6
Kondo, Y. Prediction of fatigue crack initiation life based on pit growth. Corrosion 45, 7-11, doi:10.5006/1.3577891 (1989).

Mai, W., & Soghrati, S. (2017). A phase field model for simulating the stress corrosion cracking initiated from pits. Corrosion Science, 125, 87-98.
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Why is brine composition (RH) significant? @
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Incubation Time Pit Griwwth Crack Growth * Mitigation & Repair ‘

HiGH RH: NaCl RICH BRINE Low RH: MgCl, RICH BRINE

Corrosion (Maximum Pit Size) Model

40% RH

A Is there a link between
morphology and exposure
RH?

Lower RH dominated by
MgCl,

Is it influences of HER?
Precipitates?

« 76% RH: pitting with increasing active area at conditions above
critical stability

* 40% RH: growth at critical stability - constant current through
a fixed active area

Weirich, T. D., Srinivasan, J., Taylor, J. M., Melia, M. A., Noell, P. J.,
Bryan, C. R., ... & Schindelholz, E. J. (2019). Humidity effects on

Observed link between morphology and exposure RH D Bl o oo o Caeacl (@ s salt partictes. Journat
(i.e., brine chemistry) 7
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Why care about pit morphology? —‘—‘—‘

Transition Model

| Are these irregular geometries significant? For pitting..pit to crack..CGR? |

Pit — stress concentrator Max Principal Stress Kondo criteria
| o - - o _1 m‘ Fatigue Crack

L o E. Cathode: area with radius r.

Corrasion Pit

x|

t =364 h t =364 h t=364h
Maximum pit model L S

Growth Rate

(AK)p

Chen, Z. Y., & Kelly, R. G. (2009). Computational modeling of bounding conditions for pit size on stainless steel in atmospheric environments. Journal of the Electrochemical Society, 157(2), C69.

Turnbull, A., Wright, L., & Crocker, L. (2010). New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit. Corrosion Science, 52(4), 1492-1498.
Kondo, Y. Prediction of fatigue crack initiation life based on pit growth. Corrosion 45, 7-11, doi:10.5006/1.3577891 (1989).

Mai, W., & Soghrati, S. (2017). A phase field model for simulating the stress corrosion cracking initiated from pits. Corrosion Science, 125, 87-98.



Material Influences
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Salt Composition Assumption
Canister Thermal Model

Weather Model

Airflow and Salt Deposition Model

Material surface finish varies
across canister surface

Mill finish
Welds

Surface prep to remove
tooling marks

Material composition varies
per canister
manufacturer/date of
manufacturing



Temperature, °C

Development of Relevant Lab Exposures - Diurnal @

Diurnal Cycles

T+0yC Cycle Conditions:

Best fit, T°C
* Based on storage site
weather data

Investigating pitting as a function of
surface finish and material composition !

exposed to ASTM ASW and diurnal

Salt Composition Assumption
Canister Thermal Model

Weather Model

Airflow and Salt Deposition Model

Is pitting behavior
influenced by SNF
conditions? i.e. higher T,
more concentrated brines

Explore influences of:
Diurnal Cycles
Dust
Chemistry

10
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Influence of more relevant environments on pitting
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Mirror
[

Salt Composition Assumption
Canister Thermal Model

Weather Model

Airflow and Salt Deposition Model

Understanding pit growth
under SNF relevant
conditions:

Higher T
More concentrated brines

Material composition and
finish

Srinivasan, J., Weirich, T.D., Marino, G.A., Annerino,
A.R., Taylor, J.M., Noell, P.J., Griego, J.J.M., Schaller,
R.F., Bryan, C.R., Locke, J.S. and Schindelholz, E.J.,
2021. Long-term effects of humidity on stainless steel
pitting in sea salt exposures. Journal of the
Electrochemical Society, 168(2), p.021501. 11




What influences pit morphology?
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What influences pit morphology?
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What influences pit morphology?
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What influences pit morphology?
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What influences pit morphology? @
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What influences pit morphology? @

Normalized Average

Pit-to-Crack
Transition Model

#4 mechanical grind |

Initial attempt to
obtain quantitative
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What influences pit morphology?
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What influences pit morphology?

Hmisperical

Piit morphology: function of brine but also
material and surface finish

Pit-to-Crack
Transition Model

Initial attempt to
obtain quantitative
metrics

Identify dominant
pit features
governed by
exposure,
material, surface
finish, etc.
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What influences pit morphology?
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Surface finish residual stress influences pitting @

Dislacation Density (o *+  Pit-to-Crack
: . 5.5 Transition Model

o | el ok Surface finish effects
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Surface finish residual stress influences pitting

304L - #4 mechanical grind

1 month diurnal cyclic exposure

Dislocation Density (a otal

Is pit growth/morphology
influenced by the dislocation
densiity?

Pit-to-Crack
Transition Model

Surface finish effects
near surface
dislocation density,
may be the cause for
irregular shaped pits
and microcracking

22



Pathway Forward @

o .« Can we develop an understanding of the
PIting b= relevant environmental and material
parameters’ effects on localized corrosion?
= What influences pit size, shape, etc.
under SNF relevant exposures?
* Do we care?
Pit Growth = How does this influence pit to crack
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Incubation Time

A transition?

| | | |

| | \ | |

| | | |

Pit Initiation | Crack Initiation Crack Penetration Repair
Salt Composition Assumption * Pit-to-Crack Canister Thermal Model
Canister Thermal Model Transition Model Weld Residual Stress Model
Weather Model Crack Growth Model
Airflow and Salt Deposition Model Brine Composition/Property Model
Canister Thermal Model

Weather Model
Airflow and Salt Deposition Model
Corrosion (Maximum Pit Size) Model 23
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What brine is really present on SNF canisters?

Diurnal Cycles
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potential during a wet/dry cycle of carbon
steel.’
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imitial drying
(highly
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Dust/Precipitates

Electrolyte spreading
due to capillary action  ppseryation of crevice-

like on a 55304 sample
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Certaim
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may mitigate
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"Nishikata, A., Yamashita, Y., Katayama, H., Tsuru, T., Tanabe, K., & Mabuchi, H. (1995). Corrosion science, 37(12), 2059-2069.
2 Guo, L., Mi, N., Mohammed-Ali, H., Ghahari, M., Du Plessis, A., Cook, A., ... & Davenport, A. J. (2019).

3 Cook, A. J., Padovani, C., & Davenport, A. J. (2017). Journal of The Electrochemical Society, 164(4), C148.
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‘ Mitigation & Repair ‘

Incubation Time Pit Growth Crack Growth

Salt Composition Assumption
Canister Thermal Model

Weather Model

Airflow and Salt Deposition Model

Need a better

understanding of the local
environment and significant
influences on corrosion:

Develop relevant
atmospheric testing

Examine relevant
materials/conditions



|s there a controlling species in the brine?

- I | &8

5.22 M NaCl

Incubation Time

Crack Growth !1 Mitigation & Repair !‘

‘c’ ;}.!lsf‘;-,_ o ARG e * Brine Composition

Dependence of
morphology on brine
composition

Possible influence of

carbonates?
Are microcracks enhanced @M@ to f@lﬁmitn@n of
MOQ? Srinivasan, et al., Correlation of Stainless Steel Pit
Morphology to Humidity Specific Sea Salt Brine
E)ﬁlh@m@d IHER @t t’h@ w’rfm@? Constituents. submitted to Corrosion,(2022).

28




|s there a controlling species in the brine?

I However, MgCO3 formatlon not llkely due to very | "
slow kmetlcs

Ok but what is leadmg to the subsurface
m:crocrackmg’

Alr@ mn@r@@r@dks @Wh@ﬂ@@dl @M@ to f@lﬁm@tn@n of
MgCO;?
Enhanced HER at the surface?

So what is the carbonate influence?

* Brine Composition

Dependence of
morphology on brine
composition

Possible influence of
carbonates?

Srinivasan, et al., Correlation of Stainless Steel Pit
Morphology to Humidity Specific Sea Salt Brine
Constituents. submitted to Corrosion,(2022).
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Salt composition & deposition influences

n E -] p—} p—} - ad o] - p— ﬂ E po || - | . . I_l + o] aandl
| 4 | L} I
0.4 - O. 1 89 M MgClz I 5 0.4 = 4.98 M MgClz | 1 =
I p | i L
0.2 4 - 0.2 4 . ! L
| | i
“w 0.0 I “= 0.0 ‘ : d L
w U [ - A= | i B
2 . - f S [
= 02 | B 2 024 | i L
o :‘-&E’h\; [ .T“ ] I | !
'§ .4 = A ba A s b B . L . |: el !. [ P PR | l.= 0.4 : : =
° After Cathodic Polarization [
o -0.6 4 0.6 < =
800 MgCl,-6H,0 | |
.8 100 4.98 M MacCl, | 0.8 -
1.0 - 200 1 1.0 4
el 11 ]
1.2 o

th
4.2 R e LT L E
=]
Qo

Mg(OH), - 1.28 M MgCl,

Film formation after
cathodic polarization

Miixed cq 101%2502'5:5u3'54}|455055m55m
domiinatea wy rmex a@ Mg Comcenurdtions.. Wlh)ﬂ

Incubation Time i Crack Growth ! Mitigation & Repair ‘

* Corrosion (Maximum Pit Size) Model

Dilute Chloride Solutions

ORR dominant cathodic
reaction

Diffusion limited at
negative potentials

Cathodic rates predicted
through Levich analysis

Cathodic kinetics in
concentrated brines

Katona, R. M., Carpenter, J. C., Knight, A. W., Bryan, C. R.,
Schaller, R. F., Kelly, R. G., & Schindelholz, E. J. (2020).
Importance of the hydrogen evolution reaction in magnesium
chloride solutions on stainless steel. Corrosion Science, 177,
108935.
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Salt composition & deposition influences
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Katona, R. M., Kelly, R. G., Bryan, C. R., Schaller, R. F., & Knight,
A. W. (2020). Use of in situ Raman spectroelectrochemical
technique to explore atmospheric corrosion in marine-relevant
environments. Electrochemistry Communications, 118, 106768.
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Why care about brine influences?
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Development of Relevant Lab Exposures

Diurnal Cycles
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Environment: Relevant Lab Exposures
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Need to understand
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