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Abstract

We revisit a meshfree particle model for kinetics of a 1D electrostatic plasma,
using kernel density estimation and a similar method for the electric field E.
The translationally invariant kernel K(x — y) represents the macroparticle
charge distribution. Two length scales enter, the width w of K and the
interparticle spacing |. This model conserves momentum and energy. Similarly,
continuity is satisfied exactly, and the Gauss's law and Ampere's law
formulations are exactly equivalent. A unified analysis is used for numerical
stability and noise properties. The force can be computed directly using the
convolution K> = K * K, and K> is positive definite. We discuss the analogy in
the presence of a grid. We can specify a single kernel K> , related to the ‘kernel
trick’ of machine learning. Numerical instability can occur unless K> is positive
definite, related to a breakdown in energy conservation. For the noise analysis,
the covariance matrix for the electric field shows a plasma dispersion function
modified by w and I. The number of particles per cell does not enter, and the
noise is characterized by the number of particles per kernel width, i.e. w/l. We
present the bias-variance optimization (BVO) for the electric field, and compare
it to the density BVO.



Outline

— Meshfree Vlasov-Gauss and Vlasov-Ampére formulations
— Moment equations; conservation properties

— ‘Kernel trick’ — preventing instabilities and ensuring energy
conservation

— Linearized equations for numerical stability and noise response for
a cold plasma

— Linearized equations for numerical stability and noise response for
a warm plasma

— Bias-variance optimization for the electric field



The model

One-dimensional electrostatic particle method, immobile ions.
Periodic boundary conditions 0 < x <1

Kernel density estimation to obtain the electron density

The kernel (particle shape) K(x — y) is the local charge density
within the macroparticle

As in E. G. Evstatiev, J. M. Finn, B. A. Shadwick, N. Hengartner,
“Noise and error analysis and optimization in particle-based kinetic
plasma simulations”, JCP 440, 110394 (2021).

Related kernel-like method to obtain the estimated electric field
E(x) and the electrostatic potential ¢(x)

The force on a macroparticle: integrate F(x) = [ E(y)K(y — x)dy
Same kernel for particle positions — E(x) and for E(x) — F(x).
Source and target — charge distribution same. Leads to K x K and
a positive definite kernel



The model
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The kernel K(x — y) and G(x — y)
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The model

G'(x) =1 — K(x) (Gauss); fol G(x)dx = 0. (zero potential
difference.)
Gdo G(x — &, )...electric field due to single (macro)particle at &,.
Length scales: w, A = 1/N. Ratio w/\ = Nw — particles per
kernel width.
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Same kernel K.



Note

It is possible to calculate the force directly by

F(x,t) = E(x,t) = > qaGa(x — &a(t))

§ =1 Kj and Ka(x) = [ K(y)K(x — y)dy.

This is a positive definite kernel! More later.

The kernel trick: just choose a positive definite kernel for K>
(Then K = /K>, but you do not need K.)



Meshfree Vlasov-Gauss/Vlasov-Poisson and Vlasov-Ampere

= Z GaK(x=8a(t))va(t) f(vix,t) =1(x,v,t)/p(x, 1)

and (conditional expectation) u(x,t) = [ f(v|x, t)vdv.
0t,o(x, t) + aX (IO(XJ t)U)

= = Z GoK'(x — ga(t))éa(t) + Z GaK'(x —&a(t))va(t) = 0
The continuity equation is satisfied exactly
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Nadayara-Watson non-parametric regression
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Partition of unity



Conservation properties

Momentum is conserved exactly because, with no mesh,
translational invariance is exact

Energy is conserved exactly — related to the K = K *x K issue
above. (Time step h — 0)

Vlasov-Ampére 0:E = —j = pu. V-A and V-G (V-P) are
equivalent because the continuity equation holds exactly

The model consists of N macroparticles with charge
distributed according to K, with the force computed from K>



Linearized equations, cold plasma — numerical stability

Introduce a lattice just for the linearized calculations
Xoo = (04 - 1)A1 goz = Xa T 5504

E(x,t ——AZG x—xa)08a(t) = A " (K(x — xg) — 1) 6¢p(t)
B

5504 — _wzéga F(Sa = —A Z KZ — XB )555( )

w,% = Rf(kW), wk — w0 Kf(O) =1(= wpe)

w? > 0 if K(x — y) is positive definite. If using the kernel trick
(choosing K3), be sure that K is positive definite.



Positive definite kernels

Energy conservation also requires K, to be positive definite.

If B(x) is the boxcar kernel, B « B=tent or linear is pos def.
B x B x B= quadratic spline is not.

This numerical instability seems to be the first connection
between kernels for density estimation and positive definite
(reproducing) kernels.



Linearized equations, cold plasma — noise

(E(ki,w1)*E(ko,wn)) =

2l K(k) K(k)
2 Ky (ki) — w? Ko(ki) — w3

(1 + wiwz)d(ki — ko)
1/ <R2(k1) — w%) propagator for plasma oscillation

» Includes decay of initial conditions (ballistic term) — terms off
D(k,w) =0

» Shows that a plasma oscillation (D(k,w) & 0) persists after
the ballistic term decays



Warm plasma

Linear stability for fo(v) = ©(v& — v?)/2vp: Langmuir wave
(without Landau damping) has
w? = Ka(k) + k*v§

Thermal term ameliorates the instability if the kernel trick is used
and K5 is not positive definite

In (E(ky,w1)*E(ko,ws)): propagator for the Langmuir wave
1/ (Rg(kl) — w? — kzvg) w/o Landau damping. Ballistic term
damps, leaving (non-Landau damped) Langmuir waves.

Quiet start, vo = 0.75, replicated in each cell; Ny = 1024, Ny = 2500, Np,c =50
Regular grid velocities, vp = 0.75, replicated in each cell; Ny = 128, Ny, = 1024
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Bias-variance optimization for E(x, t) and F(x, t)

OxE =1 — p, so E(x) is smoother — variance should be lower.

BVO for the density was computed in E. G. Evstatiev, J. M. Finn,
B. A. Shadwick, N. Hengartner, “Noise and error analysis and

optimization in particle-based kinetic plasma simulations”, JCP 440,
110394 (2021). Density: diagnostic. Fe(x) =Y, gaG2(x — &)
enters

Bias: (Fe(x)) = F(x) + (w?),

CW en), G _/g2Kf
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Bias-variance optimization

(MISE)
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Minimize:
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Wmin ~ Np_1/5(density); Wmin ~ Np_1/3(force)

For non-compact support kernels (e.g. Gaussian), computation time
scales as N2. With compact support, like N(Nwpi,) ~ N°/3
(density: ~ N®/5 — worse)



Conclusions

Particles per cell does not enter (meshfree.) Particles per
kernel width replaces it. Comparison with a PIC code with

A — 0 gives agreement.

Exact energy conservation occurs for h — 0: for finite h, use a
symplectic integrator like leapfrog (symplectic Euler) — good
energy conservation properties.

With K in source of E(x) and in integrating E(x) over target
particle, the same K should be used and K = K x K can be
used to compute F(x, t) directly, without computing E(x).
The kernel trick means that a positive definite kernel can be
used in place of K.

If a non-positive definite kernel is used in the kernel trick, it
can give numerical stability as well as lack of energy
conservation.

BVO: If the optimal wp,;, is chosen, the computation time
scales as N®/3 — better than N2 but not N log V.



