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*Images neutrons emitted by Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z facility
*Yields range from ~1X10'? to ~1X10"3from ~1cm tall target which are recorded as tracks on CR-39 pieces

* Microscope scans provide information on track location, diameter, contrast, and eccentricity for
discrimination of incident neutrons

* Objective: Use image reconstruction methods to improve imaging of the spatial distribution of

neutron emissions from the stagnation column
David ). Ampleford, et al. "One dimensional imager of neutrons on the Z machin‘
Review of Scientific Instruments 89, 101132 (2018)



/ FO rwa rd M 0 d e I ‘ Unattenuated n Notto Scale z

/"« Inverse problem with the Fredholm integral
equation of the first kind:

: ff K(x,y)Go(y)dy = Nog(x),c<x<d (1)

« Experimental measurements are altered by |

noise X \

* F(x) = N(x) + noise
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generate IRF matrices via attenuation
calculations

%1076 Point Spread Functions
« EQ. 1 can be discretized to use an instrument 81 AN
response function (IRF) matrix, P;
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P Maximum Likelihood Principle

*The ML principle states that :
the vector G, that brings this Si = Z Pi Gy,
likelihood to a max, is the k=1
solution to eq. 2

For a Gaussian noise L = ——] e _—) + constant (3)
distribution, the likelihood o

function can be expressed o - B

as eq. 3 g. =g, +hdg,’,

* Eq. 4, is an iterative o G Fi=G Y. P;ig"
procedure to calculate the where 89, " = g, " hi=1 Pik ™
normalized vector, g,, which |
maximizes the likelihood
function

V. Gelfgat, E. Kosarev, and E. Podolyak, “Programs for signal recovery from noisy

data using the maximum likelihood principle: I. general description,” Computer
Physics Communications, vol. 74, no. 3, pp. 335-348, 1993.



v

7/~ Maximum Likelihood Example

/ True Source Signal Instrument Response Functions
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/ ODIN Data
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 Non-incident neutrons are
filtered out, data rebinned to
ODIN's resolution

 Data is integrated along the
resolving axis to produce an
axial detector measurement, F,

* A subset of the data is used to
remove the pinholes and tag
number
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/ Axial Detector Data
Recovery of Cut ODIN Data 3500 - T e
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- Axial cut data used with truncated IRF matrix 2 ;. |
recovers a probability distribution of the £ oo |
source profile
1000 1
» Significant edge effects distort the source 500 | j
profile N \_
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* incorrect estimation of noise Recoversd Source Profile
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* Possible solution is
removing the edge effects
completely

» Data can be extended with
a Gaussian fit

« Source reconstruction
dimensions increased to
~1.5cm

* Profile is cut and
renormalized
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Questions?




