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A DIGITAL TWIN

A digital twin is an evolving virtual model of a specific system or physical asset that
assimilates data over its lifecycle to becomes a “patient-specific’ model that can be
used for intelligent automation and decision making.
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SCIENTIFIC DIGITAL TWINS




FORMULATING A DIGITAL TWIN

Assimilation

Want to calibrate the digital twin M to the
physical asset

y=h(M(s,x,t; 8%)) + €

Digital M(s,t, x; 0)
T T T —



FORMULATING A DIGITAL TWIN

Assimilation Prediction

Want to calibrate the digital twin M to the Want to use the digital twin to determine
physical asset how to fly asset safely given current

P

y =h(M(s,x,t; 0%)) + €

Digital M(s,t, x; 0)
T T T —



FORMULATING A DIGITAL TWIN

Want to predict performance

under different flight scenarios Xx

y =h(M(s,x,t; 0%)) + €

Event changes
health of asset
O = Or41

Digital M(s,t, x; 6) M(s,t, x; Op41)

T



FORMULATING A DIGITAL TWIN

The following process is often used to update and predict with a digital twin
developed using first principles, e.g. PDE model.

Collect observations y=h(s;x,0") + € Temperature of nozzle

Infer posterior of model Estlmatg ’Fhermal
variables p(81y)xp(y|6)p(@)  conductivity due to

————————————— changes in deteriorating

W

Predict maximum stress for

( | ) = ( ( 7 )) specific future flight
’ T yry

scenarios X

Propagate posterior

through predictive
W




A DATA DRIVEN DIGITAL TWIN

The following process is often used to update and predict with a purely data-driven

P

Want to construct
approximation

Collect observations

ILearn approximation
unknowns 6

N
f(:60) = gu(x:0) = ) 6npn(®)
n=0
w=f(x;0")+¢€

argming ||lw — gy (x, 9)”25

Stress fvs flight

scenarios Xx

Observations are of
stress directly

E.g. Use MLE



CHALLENGE

How can we make informative inferences to enable accurate prediction when data is

| A first principles digital twin

estilmate
~--==1 truth
40 L ;
SR
20' F
0 5 10 15 20
Time (s)

j71 = 0'(33'2 — 561),
To :ZCl(p—CEg) — T2, 0 = [opf]

A purely data-driven digital twin
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DIGITAL TWINS OF ASSET CLASSES

Often an asset is one of many within a class of assets. The exact health of these
assets will depend on manufacturing differences (e.g. additive manufacturing) and/or
the operating conditions of each individual asset.

Asset Asset Asset

However, many assets are similar and we will exploit relationships in the
observational data to improve the predictive capability of digital twins.




CONNECTING TWINS VIA THEIR OUTPUTS

Collect data for
each asset




CONNECTING TWINS VIA THEIR OUTPUTS

Collect data for
each asset

Encode
relationships



CONNECTING TWINS VIA THEIR OUTPUTS

Collect data for

Formulate models
for each asset

each asset go(x: g1 (JC; 91); gz(x; 92); 92)
Encode e
—————— b



OUTPUT-BASED ASSET CLASS LEARNING

Place all data into G a directed acyclic graph
*
Y6 = yo.¥1,¥21T  Xg= {Xo, X1, X2}
Oc = [93-! Gil'lgél']T

Use graph to formulate likelihood

W
p(yc | X6, 06) = (Vo | X6, 06)p(y1 | X1,61) p(y2 | X3, 6,)

For [Peer assets kK = 0O

logp (Y | Xi, Ok ) < ||y — g (Xi; 5'1&:)"%,5JIC

For asset of interest & = 0O

N 1 _
logp(¥o | Xg,66) = ——logm — Nolog| Ze, | — 5 (o — 9(Xo; 66)) ™ Z&) (o — 9(Xo; 6¢))



AU

We will build multi-asset digital twins using Gaussian processes

Given data (X, ¥) and covariance kernel C a single assert GP posterior mean and

variance are

m(x) =t(x)'C(X,X)™ty
g?(x) =C(x,x) —t(x)"C(X, X) 1t(x), t(x) = C(x,X)

But approximation will be poor
for limited data




Assume multiplicate and additive

W

go(x, 91(x), 92(x); 62) = p1(x; 051 )g1 () + p2(x; 052)g2 (x) + 8(x; 62

Co(Xo, Xo) + p25C1(Xo, Xo) + p25C2(X0, X)) p1201(Xo, X1)  p13Ca(Xg, X3)|
C = naC1(X1, Xo) C1(X1, X1) 0
p130a(Xa, Xp) 0 Cy(X9, Xy) |




TRAINING MULTI-ASSET GPs

Finding GP hyperparameters by minimizing the negative log likelihood is

W

1 1 N
NLL = 5 log (det C') + §yTC'_1y + 5 log (2m)

Nailve Cholesky factorization of C is expensive

(14

0 (N ) ) N — E Nk . Bloc;ﬂCovariarl._lc.rzle Matrix ﬁ.SI-’Iparsity ng:ltem
2

i1

But we can exploit sparse
covariance to efficiently evaluate
NLL and its gradient

W
O(N?3), N = max(Ny) =




PISTON EXAMPLE

M
C(x) =2
e e

Predict cycle time of a

: , S PV
piston as a function of V=g <\/A2+4k T Ta—A>
piston weight and spring A= PoS+19.62M — % i
W
Input variables x Latent variables

T € [30.00] | piston woight (ke) |
"5 € [0.005, 0-020] | piston surlace area (m2) |
V% < [0.002, 0.010] | initial gas volume () |

1000, 5000{ | spring coefficient (N/m)
| Py € 190000, 110000] | atmospheric pressure (N/m*)
1, € 1290, 296 ambient temperature (K

To € [340, 360] filling gas temperature (K)

Benchmark problem for surrogate modeling:


https://www.sfu.ca/~ssurjano/piston.html

PISTON EXAMPLE: RESPONSE SURFACES

2D Piston Functions
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PISTON EXAMPLE: TRAINING DATA

2D Piston Functions

Asset 0 Asset 1 Asset 2
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Spring Constant &

Spring Constant &
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2D Digital Twin Gaussian Process Results for Asset 7
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PISTON EXAMPLE: ERROR FOR ALL ASSETS

2D Piston Fleet of Assets Error Metrics
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CONNECTING TWINS VIA PARAMETERS

Collect data for

each asset
T —

Formulate
model for each




9(; = [90, QID]T 90 = A9~0 +b+v

Using hierarchical priors posterior is given by

p(HGJArb | y) X P(y | HGJArb )p(BGrAJ b)
=p | 6¢) p(6~0)p(A)p(b)

Log likelihood is

K
logp(¥106) = logp(¥ol6s) + ) logp(rel6i)
k=1

For asset of interest & — 0O

N 1 _
logp(yo | Xg,06) = — ?0108‘“ — Np log]| Eenvl =50 — 9o(Xo;¥e))" Zey Vo — 90Xo; ¥6))

Teov = Ze, + PZ,PT Assuming linear model go = ®(X)6,



SPRING SYSTEM EXAMPLE

myxy + byxg + ky (% — Ly) —ky(xp —x1 — L) =0
mzxér - bzxé + kz (xz — X1 — Lz) =0

Assume spring coefficient has deteriorated
differently for each asset



ASSIGN A PRIOR ENCODING PRIOR KNOWLEDGE

p(6-0) ~ N(t-0,Z-o)
A = diag(a), p(a)~N(1/K,Z;)

99- Prior
1.0+
2.0
0.81
1.8
0.6 n
0.4+ 1.4
0.9 1.2
1.0
0.0
: : : : . 0.81 . : : :
0 1 2 3 4 0 1 2 3 4

Prior predictive for target asset
T —



COLLECT DATA FROM ALL ASSETS IN THE FLEET

Using all assets we have a rich data set

¢ | o Prior
1.21 221 o Target Asset
-
n 901 Peer Assets
0.81 181
0.6 1.61
1.4
0.4
1.2
0.2
1.0
0.0
0.81




USING ONLY DATA FROM A SINGLE ASSET PRODUCES A POOR

DIGITAL TWIN

291 Prior
1.0 Target Asset
2.01
0.81
1.8+
0.6 1.61
0.4 1.4+
1.2+
0.21
1.0+
0.01
0.8+




USING DATA FROM THE FLEET IMPROVES PERFORMANCE OF A
SINGLE TWIN DRAMATICALLY

291 Prior
1.0 Target Asset
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