This paper describes obijective technical results and analysis. Any subjective views or opinions that might be expressed in SAND2022-14099C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

State Space Reconstruction from Embeddings of Partial Observables in

Structural Dynamic Systems for Structure-Preserving Data-Driven
Methods

David A. Najera-Flores'? and Michael D. Todd!

'Department of Structural Engineering
University of California San Diego, La Jolla, CA USA 92093

2 ATA Engineering, Inc., San Diego, CA USA 92128

ABSTRACT

Data-driven machine learning models are useful for modeling complex structures based on empirical observations, bypassing
the need to generate a physical model in cases where the physics is not well known or easily modeled. One disadvantage of
purely data-driven approaches is that they tend to perform poorly in regions outside the original training domain. To mitigate
this limitation, physical knowledge about the structure can be embedded in the model architecture via the model topology
or numerical constraints in the formulation. We propose a neural network framework based on Hamiltonian mechanics to
enforce a physics-informed structure to the model. The Hamiltonian framework allows us to relate the energy of the system
to the measured quantities (e.g., accelerations) through the Euler-Lagrange equations of motion. A challenge with this hybrid
data-driven, physics-constrained approach is the problem of limited observability, or not being able to measure structural
response in a complete coordinate system that is compatible with the physical constraints being enforced. To overcome this
issue, we propose combining a neural network autoencoder architecture with knowledge from embedding theory to enrich the
limited observable data with time-delay embeddings. From Taken’s theorem, we know that a sufficient time-delay embedding
is diffeomorphically equivalent to the underlying state space of the system. We use this information to find time-delays of
the original data and build the diffeomorphic mapping with a neural network encoder. The approach is demonstrated on
computational examples.
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INTRODUCTION

Data-driven machine learning models of structural systems are appealing because they capture the state of the as-built as-
deployed structure. Furthermore, they enable bypassing the process of physical model generation, which may be expensive and
time-consuming. One disadvantage of purely data-driven approaches is that they tend to perform poorly in regions outside the
original training domain. To mitigate this limitation, physical knowledge about the structure can be embedded in the model
architecture via the model topology or numerical constraints in the formulation. Najera and Todd [1] previously developed
a framework based on Hamiltonian mechanics structure-preservation to address the challenge associated with purely data-
driven approaches. However, one challenge associated with this Hamiltonian-constrained approach is the problem of limited
observability, or not being able to measure structural response in a complete coordinate system that is compatible with the
physical constraints being enforced. To overcome this issue, we propose combining a neural network autoencoder architecture
with knowledge from embedding theory to enrich the limited observable data with time-delay embeddings.
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BACKGROUND

As described in [1], an autoencoder is used to transform a set of arbitrary coordinates to generalized coordinates. As described
in the introduction, a challenge arises when there is only partial observability of the dynamic response, which is a typical
problem in practical applications where only a limited number of sensors can be used. To address this challenge, we rely on
Taken’s theorem [2] which states that a dynamical system can be reconstructed from a sequence of observations and a set of
corresponding time-delayed copies. Combining the time-delayed copies we form a time-delay embedding which, according
to Taken’s theorem, should be greater than twice the state-space dimension. However, the dimensionality of the state space is
often not known a priori.

This problem of attractor reconstruction via embeddings has been widely studied in the literature. One of the biggest questions
researchers have posed is that of determining the embedding dimension and time-delay size for practical applications. This
question was addressed by Pecora et al. [3] by approaching the problem from the perspective of obtaining an accurate recon-
struction. To this end, Pecora et al. defined a continuity statistic to test for general, nonlinear functional dependence between
observed coordinates and time-delayed copies. Kraemer et al. [4] built upon the initial work by Pecora and combined it with
the work by Uzal et al. [5] to establish a unified and automated approach to attractor reconstruction called PECUZAL.

In this work, we employ the PECUZAL algorithm to determine the optimal embedding dimension and the size of the time
delays of the observed signals. The state space is reconstructed by finding the diffeomorphic mapping between the time-delay
embedding and the generalized coordinate system that satisfies the Hamiltonian constraints imposed on the neural network.
The dimensionality of the state space is defined by the size of the latent space, which is determined iteratively by trying to
maximize reconstruction accuracy. The coordinate transformation operation is performed as
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where r is the time-delay embedding vector obtained from the PECUZAL algorithm, q is the vector of generalized coordinates,
and & and Z are the encoder and decoder neural networks, respectively. The generalized velocity and acceleration vectors can
be obtained via autodifferentiation as
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In the latent space, the neural network is constrained to preserve the physical structure of Hamiltonian mechanics. The details
of these constraints are described in [1]. The network training is performed by supervising the accuracy of the reconstruction
of the observable coordinates in physical space, while time integration occurs in the latent space where physics are enforced.

ANALYSIS

To demonstrate the proposed approach, we considered an eight degree-of-freedom (DOF) mass-spring damped oscillator with
cubic nonlinearities. It is assumed that only four DOFs are observed. The parameters of the problem are as follow: £ = 1.0,
m=1.0,c=0.008, and k,; = 5.0 . The cubic spring is only present between every other mass with a total of four cubic springs.
The training data is generated by prescribing random initial conditions. The four observed DOFs correspond to masses 2,4,5,
and 8. The PECUZAL algorithm determined that the optimal time-delay embedding dimension was 6 and was composed as
r= [x(()z),x%)o,x(()@ ,xgég)z,x(()s) ,xg)z}, where the superscript represents the mass number and the subscript represents the time delay.
The latent dimension is assumed to be 6 as well. Once trained, the model is a neural differential operator that is solved using
the RK45 solver implemented in the Python package Scipy [6]. Once the network has been trained with a single response
realization example, the trained model can be used to predict the response for new initial conditions or external forcing. An
example of the prediction for different initial conditions is illustrated in Figure 1 (left).

Lastly, a number of manifold learning techniques were applied to the original 16-dimensional state space (8 displacements and
8 velocities) to compare its topology to the learned 12-dimensional latent space. The result from applying a spectral embedding
method is shown in Figure ??. The color represents the time index going from bright to dark. As illustrated, the learned
two-dimensional manifold is the same between the original state space and the reconstructed lower dimensional one found by
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Figure 1: Time history response in the physical domain (left); analytical response shown in color and network prediction
shown in black. Spectral embedding of original (center) and learned (right) state space.

the network. This result suggests that the state space was reconstructed accurately by the network. This conclusion is further
reinforced by the accuracy of the results presented in Figure 1 where it is shown that the learned dynamic system is able to
represent the actual dynamics even after changing the initial conditions.

CONCLUSION

This work demonstrated an approach that combines embedding theory with Hamiltonian-constrained neural networks to re-
construct the state space of a dynamic system based on partial observables. The results presented here demonstrate a viable
path forward to enable practical physics-constrained, data-driven modeling for as-built as-deployed structures for digital twin
applications, including structural health monitoring.
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