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Indroduction

• The m = 0 sausage instability is a well-known phenomenon
occurring in Bennett-type pinches (z-pinches), that is, axially
uniform, axisymmetric, cylindrical plasmas. Nonlinear stages
of this instability are known to play a role in dense plasma foci
and exploding wire arrays [1]. Given the fundamental nature
of the sausage instability, it is important to understand and
quantify the nonlinear stages of its evolution [1].

• This work presents a theoretical model to study the nonlinear
sausage instability. A contour-dynamics formulation [2,3] for
the evolution of a plasma column is developed. The interface
of the plasma column is described as a series of co-axial vor-
tex rings [4]. The radius, axial location, and vortex strength
of each ring is allowed to dynamically evolve, and we derive
their corresponding equations of motion.

• The resulting equations are nonlinear and non-local in nature.
We numerically solve the derived equations.

Basic problem considered

• We consider a Bennett-type pinch at equilibrium. The plasma
column has radius R0 and density ρ0.

• We consider the following assumptions for the fluid motion:

– Axisymmetric: u = ur(t, r, z)er + uz(t, r, z)ez

– Incompressible: ρ = ρ0 and ∇ · u = 0,

– Irrotational: ∇× u = 0 (within the fluid),

– Non-viscous: ν = 0,

– Perfectly conducting: B · t = 0.

• The magnetic field is poloidal so that B .
= B0(R0/r)eϕ, where

B0 = µ0I/(2πR0) is the unperturbed magnetic-field magni-
tude at the plasma surface.

Theoretical model
• The interface of the plasma column is considered as a set of

vortex rings and is parameterized as

(r, ϕ, z) = (R(t, θ), ϕ, Z(t, θ)),

where R(t, θ) and Z(t, θ) are the radius and axial location of
each vortex ring, respectively. θ is an independent Lagrangian,
or labeling, parameter that goes along the axis.

• To satisfy the incompresibility condition, the velocity field can
be written as u = ∇×A, where A = Aϕ(t, r, z)eϕ is the vector
potential. A is related to the vorticity ω = ωϕ(t, r, z)eϕ in the
system by ∇2A = −ω. Since the flow is irrotational, vorticity
is only located at the surface of the plasma column. Therefore,
we parameterize the vortex sheet as follows:

ωϕ(t, r, z) =

Z
Γ(t, θ) δ(r −R(t, θ))δ(z − Z(t, θ))

∂s

∂θ
dθ,

where Γ is the vorticity per-unit-length for each vortex ring
and ∂s/∂θ

.
= [(∂θR)2+(∂θZ)2]1/2 is the infinitesimal arclength.

• Solving for the vector potential and the velocity field, the dy-
namical equations of motion for the radii and axial locations
of the vortex rings are given by:

∂

∂t
R(t, θ) =

1

2
Γ (t · er) + Ur(t, R, Z), (1)

∂

∂t
Z(t, θ) =

1

2
Γ (t · ez) + Uz(t, R, Z), (2)

where is the unitary tangent vector along the surface of the
plasma column. The velocities Ur and Uz are

Ur(t, r, z) = −P.V.

Z
∂G

∂z
Γ(t, θ)

∂s

∂θ
dθ,

Uz(t, r, z) = P.V.

Z
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dθ,

where the kernel G(r, z; r′, z′) is written as

G(r, z; r′, z′) =
1

2π

r
r′
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Here K(m) and E(m) are the complete elliptic integrals of
the first and second kind, respectively. The parameter m =
m(r, z; r′, z′) is given by

m =

s
4rr′

(z − z′)2 + (r + r′)2
.

• The governing equation for Γ is obtained from the
momentum-conservation equation [5]. The resulting equation
of motion is

∂

∂t
Γ(t, θ) = −2

�
∂

∂t
U(t, θ)

�
· t+ v2A

R2
0

R3
(t · er), (3)

where vA is the Alfven velocity corresponding to the magnetic
field evaluated at the unperturbed plasma surface.

Linear growth
• Beyond the assumptions initially stated, Eqs. (1)–(3) are exact

and no approximations have been made. The dimensionality
of the problem has been greatly reduced using the contour-
dynamics formulation. However, two main difficulties arise:

1. The governing equations are nonlocal.

2. Equation (3) is, in fact, a Fredholm-integral equation of the
second kind since ∂Γ/∂t explicitly appears on the left-hand
side of Eq. (3) and implicitly within the ∂U/∂t term.

• To verify the numerical implementation of Eqs. (1)–(3), we cal-
culated the linear growth rate γ and compared it to the well-
known growth rate obtained using the Eulerian framework.
For a sinusoidal perturbation with wavenumber k, one has

γ2 =
(kvA)

2

kR0

I1(kR0)

I0(kR0)
,

where Iν(x) is the modified Bessel function of the first kind.
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Nonlinear evolution of the interface
• Equations (1)–(3) were written in dimensionless form and

solved for the intermediate case of kR0 = 2.

• The images below show the nonlinear evolution of the sausage
instability. In regions where the plasma radius is smaller (re-
ferred to as "troughs"), the magnetic force is greater and causes
an inwards radial motion. This increases the amplitude of the
troughs, and a runaway effect occurs. In the nonlinear stage,
the sausage instability evolves into a "spindle"-like structure
with broad troughs and sharp spikes.
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• The amplitude of the sausage-mode troughs and spikes are
shown in the figure below.
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• The trough amplitude is always smaller than the amplitude
calculated from linear theory. In contrast, the spike amplitude
initially grows faster than the linear amplitude. However, in
the nonlinear stage, the spike velocity saturates, and the spike
amplitude only grows linearly in time.

Saturation amplitude of the linear growth
• The strength of nonlinear effects can be measured by the dif-

ference between the linear and nonlinear solutions.

• Let the saturation amplitude be defined as the trough ampli-
tude δRsat of the linear solution calculated at the time when
the nonlinear solution of Eqs. (1)–(3) differs by 10%, i.e., when

|δRlin − δR|/δRlin = 0.1.

• Our calculations suggest that the saturation amplitude de-
pends quite significantly on the dimensionless quantity kR0.
Ongoing work is focused towards analytically computing [6]
and physically understanding the observed trend.
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Future research
1. Additional work must be done to improve the developed algorithm. For example, the Lagrangian trajectories of the vortex rings

lead to bunching along the spike structures. This was overcome by a relaxation algorithm. However, introducing an artificial
velocity field tangent to the surface may offer a cleaner, more natural solution to this problem.

2. Additional physics may be incorporated to the model, e.g., adding an axial magnetic field and allowing for 3D perturbations.

3. Results from this semi-analytical study may serve as a benchmark suite for more complex, magnetohydrodynamics codes.
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