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Motivations
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7 Platinum used as high pressure standard for shock compression experiments
on the Z machine

These experiments subjected to
very large currents and magnetic
fields

The conductivity of the standard
needs to be known

Experiments are difficult in thermodynamic regimes relevant for Z - ab inito
theory is crucial
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”>~ Density Functional Theory

4
The external potential (and total energy) are unique functionals of the

electron density.

The density that minimizes the total energy is the exact ground state
density.

E[p(M)] = Fyelp()] + f P(r) Vot (F)dr

Fxclp(r)] unknown universal functional, must be approximated
Fxclp(m)] = Tslp(r)] + Eylp(r)] + Exclp(r)]

Solving N single-particle differential equations
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Electrical Conductivity - Kubo Greenwood (KG)

(@) = 2 NN [P i) — P 11T ) 8 e — e — o)

j=1i=1a=1

N discrete bands, Q cubic supercell volume element, F Fermi weight, ¥ electronic
wave function.

VASP KG simulations - average over many snap shots, x-y-z-components

M. P. Desjarlais, J. D. Kress, and L. A. Collins Phys. Rev. E 66, 025401(R) 26 August 2002.
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DC Conductivity
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Ambient conditions, p = 21.45 — . =1
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Ohring, Milton. "Engineering Materials Science." New York: Academic Press, 1995.
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Fermi Surface

Fermi velocity (m/s)

g 1o Simple crystalline systems
Pt (Cu) with highly symmetric
fermi surface require few
K points.

/

K points used determine
where on the Fermi
surface contributes to the
conductivity.
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Platinum much more

FIG. 4: Fermi surfaces of platinum-group metals. The Fermi surface of Cu is also shown as a com pl ex need acom pl ex
’
reference. The color scheme indicates the Fermi velocity. k p OI nt mes h

Dutta, Shibesh et al. “Thickness dependence of the resistivity of platinum-group metal thin films.” Journal of Applied Physics 122 (2017): 025107. ‘
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" Number of k points increase as M3 for MxMxM mesh

Brilloiun Zone Sampling

Irreducible wedge reduces computation costs.
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Number of Orbitals
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" Discrete Band Structure Smearing
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N N 3
2me’h?

oy (w) = 3m2wnz Z [F (i) = F (0] | (%119 i) 6 (i — € —@

j=1i=1a=1
Apply Gaussian broadening - control width of Gaussian

Rule of thumb: start with energy difference between eigenvalues above and
below Fermi energy
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P’ Discrete Band Structure Smearing Con't

Smooth out local oscillations without losing structure
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Number of Snapshots
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925 —+— 1 snapshot
' 5 snapshots
Taken from end of MD — }
simulation to ensure g52.0 19 snapshots
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—+— 46 snapshots
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Snapshots spaced by nearest
prime number to twice the
correlation time
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p Conclusions
; 12.5 Kubo Greenwood

Implementing results from all Drude Fit

convergence studies %Tgm-o e  Ohring, 1995
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Within 23% of measured value, ¢t :
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Extend to melt, vapordome

Finite size effects will be
quantified

Ohring, Milton. "Engineering Materials Science." New York: Academic Press, 1995.‘



