This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Remora: A MPI runtime for Composed Applications at
Extreme Scale

Noah Evans
Sandia National Laboratories
nevans@sandia.gov

Ron Brightwell
Sandia National Laboratories
rbbrigh@sandia.gov

Kevin Pedretti
Sandia National Laboratories

ktpedre@sandia.gov

Brian Kocoloski
The University of Pittsburgh

briankoco@cs.pitt.edu

Shyamali Mukherjee
Sandia National Laboratories
smukher@sandia.gov

John R Lange
The University of Pittsburgh

jacklange@cs.pitt.edu

Patrick Bridges
The University of New Mexico
bridges@cs.unm.edu

ABSTRACT

As on-node computational power continues to outstrip I/O
bandwidth HPC workflows are increasingly composed into
communicating processes on the same node.

While MPI provides methods of composition, such as
MPMD jobs and intercommunicators, they require signifi-
cant implementation overhead in the composed applications
themselves, either via knowledge of the structure of the com-
position or via an intimate understanding of the mappings
between applications.

This paper describes a new MPI runtime, Remora,
currently in progress, which uses the composition prim-
itives of the Hobbes project to make it possible to
compose MPI applications in such a way that mini-
mizes implementation overhead. Remora requires minimal
changes to the applications themselves, preserving tradi-
tional MPIL.COMM_WORLD semantics while using intra-
communicators instead intercommunicators in order to limit
platform specific dependencies.

1. INTRODUCTION

The Message Passing Interface (MPI) has supported com-
position since it’s inception via intercommunicators. How-
ever, the lack of intercommunicator wire up and bring down
until version 2.0 of the specification means intercommunica-
tors remain in limited use.

Modern MPI runtimes such as [4], [3] also support
composition via MPMD, however the traditional implemen-
tation of MPI relies on a common MPIL.COMM_WORLD
which means that composed applications must be aware of
each other in the common rank space in order to commu-
nicate effectively, an assumption that requires refactoring
compared in many MPI applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2016 ACM. ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

These two compositional approaches force composed ap-
plications to be intimately aware of the nature of the com-
position being performed, which in turn would require non-
trivial effort to implement in MPI simulations that can be
millions of lines of code.

This has lead to situation where, dispite having composi-
tion mechanisms, there are few composed MPI simulations
in practice.

This paper describes a alternative model of MPI composi-
tion in progress based on a novel MPI runtime called Remora
which makes composition of MPI possible with a minimum
of invasive changes to prexisting code. Every application
maintains its view of MPI COMM WORLD while at the
same time providing a new global intracommunicator. The
infrastructure provided by this runtime can potentially be a
foundation for future MPI runtime composition mechanisms
like MPT Sessions [5].

2. COMPOSITION IN MPI

To effectively compose applications using MPI, composi-
tion mechanisms must minimize the modifications the indi-
vidual composed applications as MPI Simulation codes are
often millions of lines of code. This means that traditional
methods of composing MPI applications are ill suited to the
needs of modern composition: MPMD needs ranks to be di-
vided among the composed applications, which entails a cer-
tain awareness of the nature of the underlying composition.
Intercommunicators are difficult to compose programmati-
cally for more than two applications.

To make composition easier, the ability to compose ap-
plications without changing standard interfaces, especially
MPI_COMM_WORLD, would allow applications to run
while preserving the illusion that they are running in an iso-
lated evironment. Only the actual composition logic would
be necessary to allow individual applications to interact in
a shared environment.

To enable this sort of composition using MPI we are cur-
rently developing Remora, a novel MPI runtime built to en-
able composition.

Remora is built on top of the Hobbes project [2] which
makes composition possible by provisioning multiple en-
claves on a node, each of which consists of a subset of the
node’s hardware and an internalized OS and runtime stack.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-13929C



Heretofore, Hobbes has primarily focused on provisioning
isolated environments that prevent cross-enclave interfer-
ence from harming application performance. However, as a
result support for cross-enclave communication must be ex-
plicitly supported by the underlying enclave environments,
and heretofore has been limited to shared memory mappings
via the XEMEM system [6].

This paper details novel components of the Hobbes run-
time that provide additional support for application compo-
sition.

2.1 MPI_COMM_UNIVERSE

One of the foundations of Remora is a new communicator
called MPI_COMM_UNIVERSE, a new communicator that
replaces MPL.COMM_WORLD as the global communicator
of created by the MPI runtime.

Upon initialization, each individual composed application
receives its own portion of the MPI. COMM_UNIVERSE
rank space which is then renamed to MPT_COMM_WORLD,
which in turn allows each application to operate as if it was
running in isolation.

This approach allows incremental composition, since
unmodified applications operate normally and it is
only mnecessary to add composition logic aware of
MPI_COMM_UNIVERSE. This extra logic is free to im-
plement custom composition logic to wire-up for individual
applications, including name services and client/server com-
munications.

2.2 Cross OS Composition via MPI

The Hobbes project leverages this incremental implemen-
tation to make it possible to run heterogeneous MPI ap-
plications, not only can heterogeneous MPI applications be
launched, composed and run transparently in enclaves, but
different OS and Runtime (OSR) stacks can be run on the
same node via pisces co-kernels [? ].

This makes it possible to run MPI simulation jobs on
custom light weight kernels such as Kitten [7] for perfor-
mance, concurrently with heavier weight kernels such as
Linux which provide the full POSIX support for analytics
and visualization applications.

2.3 The Implementation Remora Cross OS
MPI Runtime

However traditional MPI runtimes like OpenMPI’'s ORTE
are fundamentally bound to POSIX, they assume a full fea-
tured POSIX environment during process setup and bring
down. This assumption makes it difficult to port MPI to
novel architectures.

One of the central contributions of Remora is a custom
OpenMPI runtime which minimizes POSIX dependencies
while at the same time supporting the Hobbes infrastruc-
ture on both Kitten and Linux. This allows for different
operating systems to use the MPI library across operating
systems. Remora currently runs on both Kitten and Linux.

Most of the work of the runtime, including process
startup, resource allocation and teardown are done by per-
enclave control processes that execute in each enclave envi-
ronment and query the Leviathan information service and
communicate via XEMEM [6], which removes the kernel
from the control plane. Remora utilizes the Vader [8] BTL,
which is built on the XPMEM API and thus is supported
via XEMEM without modification.

2.4 The Remora Process Management Infras-
tructure(RPMI) and Process Launcher

The Remora Process Laucher launches composed applica-
tions using an XML file which specifies a multilevel topol-
ogy mapping applications to communicators and enclaves to
applications. The MPL. COMM_UNIVERSE is partitioned
within the process laucher which sets the relevant PMI val-
ues not only to the local MPI.COMM_WORLD rank and
size, but the MPI_COMM_UNIVERSE rank and size as well.

This bring-up and tear down is coordinated by a custom
PMI implementation on Remora, RPMI. RPMI is imple-
mented using a shared memory database client/server in-
frastructure, built using facilities provided by Leviathan.
RPMI currently supports the PMI1 API [1]. Individual MPI
processes query the Leviathan information service in order
to discover the global state of MPI applications, both the
state of their local MPI_.COMM_WORLD and the global
MPI_COMM_UNIVERSE.

3. RELATED WORK

Remora explores a very similar problem space as MPI
Sessions [5]. MPI Sessions increase MPI scalability by pro-
viding individually configured and initialized MPI “sessions”
eliminating the need for libraries and composed applications
to share an MPI. COMM_WORLD entirely. Remora differs
from MPI Sessions by still maintaining a global communica-
tor, but Remora’s implementation does not require a global
communicator, and could be used as a substrate for imple-
menting session functionality.

4. CONCLUSIONS AND FUTURE WORK

this paper has introduced a novel MPI runtime, Remora,
that provides mechanisms enabling the composition of MPI
applications on multiple operating systems on the same
node. By preserving traditional MPI_COMM_WORLD se-
mantics on a per application basis it minimizes the changes
to an MPI application needed to enable composition. Like-
wise by minimizing the reliance of the runtime on POSIX it
can work on many different operating systems unmodified
with minimal porting effort. This makes it possible to run
MPI on novel operating systems and explore mechanisms
such as the Hobbes Node Virtualization Layer.

References

[1] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Kr-
ishna, E. Lusk, and R. Thakur. Pmi: A scalable parallel
process-management interface for extreme-scale systems.
In Furopean MPI Users’ Group Meeting, pages 31-41.
Springer, 2010.

[2] R. Brightwell, R. Oldfield, A. B. Maccabe, and D. E.
Bernholdt. Hobbes: Composition and virtualization as
the foundations of an extreme-scale os/r. In Proceedings
of the 3rd International Workshop on Runtime and Op-
erating Systems for Supercomputers, page 2. ACM, 2013.

[3] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H.
Castain, G. Bosilca, and A. Lumsdaine. Open mpi: A
high-performance, heterogeneous mpi. In 2006 IEEE In-
ternational Conference on Cluster Computing, pages 1—
9. IEEE, 2006.



[4] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
high-performance, portable implementation of the mpi
message passing interface standard. Parallel computing,
22(6):789-828, 1996.

[5] D. Holmes, R. E. Grant, K. Mohror, M. Skjellum, An-
thony Schulz, W. Bland, and J. M. Squyres. Mpi ses-
sions: Leveraging runtime infrastructure to increase scal-
ability of applications at exascale. In Proceedings of the
23rd European MPI Users’ Group Meeting, page 9. ACM,
2016.

[6] B. Kocoloski and J. Lange. Xemem: Efficient shared
memory for composed applications on multi-os/r ex-
ascale systems. In Proceedings of the 24th Interna-
tional Symposium on High-Performance Parallel and
Distributed Computing, pages 89—100. ACM, 2015.

[7] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui,
L. Xia, P. Bridges, A. Gocke, S. Jaconette, M. Leven-
hagen, et al. Palacios and kitten: New high perfor-
mance operating systems for scalable virtualized and na-
tive supercomputing. In Parallel € Distributed Process-
ing (IPDPS), 2010 IEEE International Symposium on,
pages 1-12. IEEE, 2010.

[8] M. G. Venkata, R. L. Graham, N. T. Hjelm, and S. K.
Gutierrez. Open mpi for cray xe/xk systems. Proceedings
of the 2012 Cray User Group, Greengineering the Future.
Stuttgart, Germany, 2012.



