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,/An essential part of Sandia’s mission is predicting through analysis the performance of
/" complex systems and structures subjected to various normal and abnormal environments.

Motivation

Fasteners are an integral connector in many of these system and structures, but there are
limitations to conventional fastener modeling approaches.

Challenges (Solid Mechanics):

oltis infeasible to test all fasteners in all
environments to obtain expected behavior.

o Different fastener materials, sizes, loadings, etc.

o Modeling fidelity requirements of system-|level
models are restrictive and create challenges for
capturing relevant behavior while maintaining
feasibility of the larger simulation.

Question:
@ B
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/" A Machine Learned Surrogate Modeling Approach for Fasteners

~200,000 nodes!

/

/o What are we even trying to replace?
o High complexity fastener model/behavior.

o How do we replace it?

o Subdivide model into complicated inner domain
and simple outer domain.

o How will the surrogate communicate with the
rest of the model? 3]

o Model needs to receive nodal displacements and
return nodal forces.

[3]

Input: nodal disp.
Output: nodal forces

[1.2]



Machine learning approach

o Our approach uses principal component analysis (PCA) and regression models to Iearn a
mapping from the interface displacement field to the interface force field

1. Generate training data

traln o 3Ni11 erface X j\rsarn sles t 3Nin erface X J\rsal-n sles
Umterface € R rert ol Fléﬁéilface e R bert Pl
o
2. Perform PCA on the training data to obtain low-dimensional representations of the 2 : -
displacement and force fields ®
Can be a
large mesh!
traln traln
1nterface mterfa,ce 2]
3. Learn a mapping from the reduced coordinates of the dlsplacement field to the reduced

coordinates of the force field Dense Neural Networks
- — - Random Forest

Polynomial Regressor




// Results

Training results

Forces (ML)

Full reaction =, .

/ Coupled ML-FEM results

-2 a 2

Forces (truth)

\ Great! Models are very accurate in training /

LI} e
time, 1

ad! Very inaccurate when coupled to solver (ofte
failed to converge)

What's happening?

o Our hypothesis: ML models don’t preserve important physical and

mathematical structure
o Results in negative interplay between model and solver

o Our solution: Embed structure into our mode|

%




/ A physics-constrained machine learning approach

7/ © Follow a similar approach to before, but instead learn a stiffness matrix

—

/ F =|K(U)U

T .
Machine-learned stiffness matrix Decomposmg K,
Actually learning L

o Why? We can enforce symmetric positive definiteness (SPD) into our model by learning

K (ﬁ) — 1,(0) (ﬁ)} !

o SPD is a key mathematical structure of stiffness matrices in FEM
o Can be used to provide energetic stability statements
o Model form is appropriate for conjugate gradient solvers

o Result: a new model that preserves important physical structure

X/

s Note: we still leverage principal component analysis to reduce the input and output dimension, so the full model

looks like: . (ﬁ) _ cﬁﬁ(@Tﬁ) {L(@Tﬁ)r &7

We require the same basis for both the force and displacement for symmetry




/" Results: fastener exemplar S

/4 Problem setup
’ «  Fastener undergoing deformation with contact

/ *  Remove middle domain around fastener
*  Mechanics

*  Elastic material model
 Contact

Tensile Displacement (in)

[ Domain Boundary J

* Training dataset:

* 21 quasi-static trajectories w/ 100 points per Schematic of fastener exemplar
trajectory

* Radial loadings from ~-65 to 65 degrees

ML models 0,004 - —
*  LLS-POD: Linear least-squares model (not _ .
structure preserving) < 0.002 1 -
= o v
*  NN-POD: Neural network model (not structure 2 0.000 4 5
preserving) g 80
*  SPD-LLS-POD: Linear model for the stiffness 2 ~0.002 - s
matrix that preserves SPD property =
*  SPD-NN-POD: Neural network model for the ~0.0047
stiffness matrix that preserves SPD propert ' ' ' ' '
P PrOperty o0 0z 04 06 08 10 Number of model parameters, IV,
Time (s)
Example of Loading Training results

All models perform well in training




Relative error in & reaction, e,
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Non structure preserving models go unstable as the number

of model parameters grow
Only the SPD model is robust

/ Results: fastener exemplar Z

Now deploy models on new testing configurations
ML model is now coupled to solver

Linear models bisect contact behavior

SPD neural network model is robust AND accurate!

FEA Errors vs. # model
ramelters =

10! 10 10
Numer of model parameters, N,
Average relative error on testing cases as a
function of model parameters

Relative error in x reaction, ¢,
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fastener exemplar

geometry
Errors vs. loading angles
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Loading angle, a

Relative error on testing cases for the best performing

models as a function of loading angle

Full reaction =, I,

Predicfed Qols
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Accurate and
Robust!

o 0nes n= 1.0
time,

Integrated force quantity-of-interest for max

contact condition as a function of time for the
best models ‘




/" Conclusions /Future Work
74
/" Conclusions

o Retaining physical structure is very important!

o This approach continues to show promise.
o Simple (so far), but successful.

o Maybe other applications can benefit.

(2]

(2]

60D +- .

Future Work

o Introduce additional complexity to the analysis.
o Plasticity

o Preload
o Etc.

i) 4

FuII reaction X, F,
&

o Assess and optimize run times
o Are we maintaining feasibility of larger simulation?

Accurate and
Robust!

o Make model corotational

time, {
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Prescribed
Displacement

/
/" o First Try: quasistatic, multiaxial loading with possible unloading. ‘
/ o Maybe we should try something a little easier!
Fixed

o Radial Loadings (although still multiaxial). HssEeaen
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Results: cube exemplar

b
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Problem setup =
*  15x15x15 cube undergoing deformation =

«  Remove middle 5x5x5 elements

*  Mechanics:
. Elastic material model
. Deformations of 10-15% leads to small nonlinearities

LA A1

n A

« Training dataset:
* 16 quasi-static trajectories w/ cosine loading

« 100 points per trajectory Schematic of cube exemplar

. 1 * —a— SPD-LLS-POD
* Train three ML models : > Weop
*  LLS-POD: Linear least-squares model -
«  NN-POD: Neural network model *'"—fw_
*  SPD-LLS-POD: Linear model for the stiffness matrix that E
preserves SPD property o
- =" |
* Training results e
* All models perform well _
*  Linear model performs the best 0t »
Number of model parametejr-s, N,
All models perform well in training Training results ‘




/ Results: cube exemplar continued

Now deploy models on new testing configurations
ML model is now coupled to solver

Errors vs. # model paramefters

Predicted Qols

Relative error, ¢*

—8— 5PD-LLE-POD
== LL5-POD

NM-FOD

Full reaction =, F.

— $PD-LLS-POD
— LSO
WN-POD

o FOM

Number of model parameters, N,

Average relative error on testing cases as a
function of model parameters

All models can be accurate, but
Non structure preserving models go unstable as the number of model parameters grow

Only the SPD model is robust
Robustness is required on more complex exemplars

Integrated force quantity-of-interest as a
function of time for various models

Field solution

Max von-mises stress as predicted by the ML-
FEM simulation (left) and FEM simulation (right)



