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Motivation
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An essential part of Sandia’s mission is predicting through analysis the performance of 
complex systems and structures subjected to various normal and abnormal environments.
Fasteners are an integral connector in many of these system and structures, but there are 
limitations to conventional fastener modeling approaches. 

Challenges (Solid Mechanics):
o It is infeasible to test all fasteners in all 

environments to obtain expected behavior.
oDifferent fastener materials, sizes, loadings, etc.

oModeling fidelity requirements of system-level 
models are restrictive and create challenges for 
capturing relevant behavior while maintaining 
feasibility of the larger simulation.

Question:

Can we replace our fastener models with a low-
cost, machine-learned surrogate that can transfer 
loads and accurately predict relevant QoIs while 
quickly and robustly running in large-scale FEA?
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A Machine Learned Surrogate Modeling Approach for Fasteners

[1,2]

o What are we even trying to replace?
o High complexity fastener model/behavior.

o How do we replace it?
o Subdivide model into complicated inner domain 

and simple outer domain.

o How will the surrogate communicate with the 
rest of the model?
o Model needs to receive nodal displacements and 

return nodal forces.

~200,000 nodes!

Domain Boundary

[3]

[3]

Can We Remove 
This Complexity?

Input: nodal disp.
Output: nodal forces

[2] [2]



o Our approach uses principal component analysis (PCA) and regression models to learn a 
mapping from the interface displacement field to the interface force field

1. Generate training data

2. Perform PCA on the training data to obtain low-dimensional representations of the 
displacement and force fields

3. Learn a mapping from the reduced coordinates of the displacement field to the reduced 
coordinates of the force field

4

Machine learning approach
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Dense Neural Networks
Random Forest

Polynomial Regressor

Can be a 
large mesh! 

[2]

[2]



Great! Models are very accurate in training

Results

Bad! Very inaccurate when coupled to solver (often 
failed to converge)

Training results Coupled ML-FEM results

o Our hypothesis: ML models don’t preserve important physical and 
mathematical structure
o Results in negative interplay between model and solver

o Our solution: Embed structure into our model

What’s happening?



 Note: we still leverage principal component analysis to reduce the input and output dimension, so the full model 
looks like:

We require the same basis for both the force and displacement for symmetry

o Follow a similar approach to before, but instead learn a stiffness matrix

o Why? We can enforce symmetric positive definiteness (SPD) into our model by learning

o SPD is a key mathematical structure of stiffness matrices in FEM
o Can be used to provide energetic stability statements
o Model form is appropriate for conjugate gradient solvers

o Result: a new model that preserves important physical structure
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A physics-constrained machine learning approach
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Machine-learned stiffness matrix Decomposing K, 
Actually learning L



Contact!

Results: fastener exemplar

7

• Problem setup
• Fastener undergoing deformation with contact
• Remove middle domain around fastener
• Mechanics

• Elastic material model
• Contact

• Training dataset: 
• 21 quasi-static trajectories w/ 100 points per 

trajectory
• Radial loadings from ~-65 to 65 degrees

• ML models
• LLS-POD: Linear least-squares model (not 

structure preserving) 
• NN-POD: Neural network model (not structure 

preserving) 
• SPD-LLS-POD: Linear model for the stiffness 

matrix that preserves SPD property
• SPD-NN-POD: Neural network model for the 

stiffness matrix that preserves SPD property

Training resultsAll models perform well in training

Schematic of fastener exemplar

Domain Boundary

X

Z

Example of Loading
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• Now deploy models on new testing configurations
• ML model is now coupled to solver

• Non structure preserving models go unstable as the number 
of model parameters grow

• Only the SPD model is robust
• Linear models bisect contact behavior
• SPD neural network model is robust AND accurate!

Average relative error on testing cases as a 
function of model parameters

Integrated force quantity-of-interest for max 
contact condition as a function of time for the 

best models

Relative error on testing cases for the best performing 
models as a function of loading angle

Results: fastener exemplar

Max contact

fastener exemplar 
geometry

Errors vs. loading angles Predicted QoIs

X

Z

FEA Errors vs. # model 
parameters

Accurate and 
Robust!



Conclusions /Future Work
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Conclusions
o Retaining physical structure is very important!
o This approach continues to show promise.

o Simple (so far), but successful.
o Maybe other applications can benefit.

Future Work
o Introduce additional complexity to the analysis.

o Plasticity
o Preload
o Etc.

o Assess and optimize run times
o Are we maintaining feasibility of larger simulation?

o Make model corotational
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Accurate and 
Robust!
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Extra Slides
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Environment/Loading
o First Try: quasistatic, multiaxial loading with possible unloading.
o Maybe we should try something a little easier!
o Radial Loadings (although still multiaxial).
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X

Z

Prescribed 
Displacement

Fixed 
Displacement

X

Z
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Results: cube exemplar
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• Problem setup
• 15x15x15 cube undergoing deformation
• Remove middle 5x5x5 elements
• Mechanics: 

• Elastic material model
• Deformations of 10-15% leads to small nonlinearities

• Training dataset: 
• 16 quasi-static trajectories w/ cosine loading
• 100 points per trajectory

• Train three ML models
• LLS-POD: Linear least-squares model 
• NN-POD: Neural network model 
• SPD-LLS-POD: Linear model for the stiffness matrix that 

preserves SPD property

• Training results
• All models perform well
• Linear model performs the best

Schematic of cube exemplar

Training resultsAll models perform well in training
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• Now deploy models on new testing configurations
• ML model is now coupled to solver

• All models can be accurate, but
• Non structure preserving models go unstable as the number of model parameters grow
• Only the SPD model is robust 

• Robustness is required on more complex exemplars

Average relative error on testing cases as a 
function of model parameters

Integrated force quantity-of-interest as a 
function of time for various models 

Max von-mises stress as predicted by the ML-
FEM simulation (left) and FEM simulation (right)

Predicted QoIs Field solutionErrors vs. # model parameters

Results: cube exemplar continued


