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> 1 Next Generation Pulsed Power (NGPP) Machine

« Sandia National Laboratories is designing a Next Generation Pulsed Power machine,
which is capable of delivering >60 MA of current to a load.

* Present designs are investigating current pulse lengths in the range of 100 ns - 200 ns.

« Strong B-fields cause electrons to emit radiation and lose energy through a radiation
reaction force. In this study, we examine how important radiation reaction effects are on
power flow electrons outside of the load.

e Ataradiusof1 mm:60MA ->12,000T.

« Ataradius of 100 um: 60 MA -> 120,000 T.

__ Load region
One design being &= . <1cm
considered for
NGPP
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s 1 What is the radiation reaction force? m

« When accelerating charged particles, such as electrons, emit radiation as defined by the

Larmor formula, the emission causes a radiation reaction force on the particle. |
* From Ford and O’Connell, Phys. Lett. A, 174, pp. 182-184 (1993):
Lorentz Force Law: F=¢g(E+vxB) ‘
not in existing power flow codes
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. | Radiation Reaction in Crossed Uniform E and B Fields

dP’,
Lorentz-Abraham-Dirac Equation: dt’
In E x B Drift Frame (P, =0)
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‘ Drift - Kinetic Modeling Approach for Radial MITLs
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(vacuum/space-charge fields with

(vacuum fields with )
magnetic moment conserved)

magnetic moment conserved)

ExB+u(t)BxVB d_ﬂ‘ R 244

B gy  B? dt Tdarnp due to radiation reaction)
*Hess and Evstatiev, SAND Report (2021) https://www.osti.gov/serviets/purl/1814239

Present work* (vacuum fields with
V1 4+ 2uB/me? time-dependent magnetic moment




When does radiation reaction become important for NGPP?

10°

* One criterion for radiation 5100 T
reaction effects to become
important on NGPP is the
damping time becomes equal ~ 10°
to (or less than) the NGPP
pulse length.

2]
 For a pulse length of 100 ns, %101.
radiation reaction becomes £

important B> 7200 T. e

« For a pulse length of 200 ns, 0
radiation reaction becomes 107}
important B> 5100 T.
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|
Electron Dynamics in the Radial MITL Modeled with Drift Kinetics m
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Results for Radial MITL with |
(solid no radiation reaction , crashed with radlatlon reaction
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Total Kinetic Energy (keV)

Decreasing the Load Radius Enhances Kinetic Energy Reduction Due to

Radiation Reaction

* By decreasing the load radius to 100 um (and keeping other MITL parameters
fixed), the B-field increases by a factor of 10x near the load compared to the

previous load radius = 1 mm case.

« The damping time « 1/B? decreases by 100x causing enhanced radiation

reaction effects.
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« We simulated single particle electron motion and kinetic energy loss due to
radiation reaction in a high-current radial MITL near a load for NGPP design
parameters using a guiding center drift approach.

« The key piece of physics is the introduction of a time-dependent magnetic
moment which is damped due to radiation reaction.

|
0 | Summary m

 Electrons in B-fields >10,000 T (which will occur in the MITL near aload <1 mm in
60+ MA drivers) can experience significant cycloidal kinetic energy
loss/prevention of kinetic energy gain due to radiation reaction.

« Radiation reaction also affects axial grad B drift motion in the radial MITL by |
damping the electron’s magnetic moment.

«  Future work will include coupling radiation reaction physics with space-charge
fields for modeling electron dynamics in radial MITLs. |



