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Overview: computational physics & mechanics

Motivation: compared to governing eqs. & numerical methods,
constitutive models are weakness of simulation

| Goal: efficient accurate surrogate models of material processes |

Which one is the ML prediction?

Everyone is doing machine
learning, it is easy and
sometimes useful.

- a paraphrase of George Box
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Microstructural problems of interest: problem statement

Premise: the state of each of these systems/processes can be encoded as
an image/field with multiple channels ¢(X) predict the output Qol.

bubbles multi-phase polycrystal pores/inclusions
Classes of closure problems:

> property estimation: map initial image ¢(X) to a static quantity ¢, e.g.
diffusivity
» homogenization: map initial image ¢(X) and forcing €(t) to evolving
scalar quantity W(t), e.g. energy
> field prediction: map initial image ¢(X) and forcing €(t) to an evolving
field o(X,t), e.g. stress field
each are specialized PDE solves: e.g. regular domain, nominally homogeneous
loading, output Qols scalars/system averages not fields.
Applications: subgrid models, structure-property exploration /optimization, &
material uncertainty quantification
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Microstructural problems of interest: challenges
Homogenization has challenges in common with many ML tasks:

» encoding the image into a compact,
representative latent space which serves as an initial
condition and avoids manual featurization

» handling the time evolution of the Qol in the IBVP,
e.g RNN (LSTM) / NODE

» imposing physical constraints & symmetries e.g.
rotational symmetries, 2nd law considerations

> interpretability of the latent space & other network
outputs — improved “trustworthiness”

» data sparsity / limited modality (low & limited data)
— go beyond training models to models.

» multifidelity / transfer learning
» noisy data

but there is also specific domain knowledge coming
from classical theory we use to guide designs.
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Exemplars: RVEs of materials with microstructure
Polycrystalline materials Composite materials

> entities: grains/crystals > entities: inclusions

» neighbor-neighbor » all to one inclusion-matrix
interface interactions interactions

> input: orientation angles » input: phase (label)

> output: stress(time) > output: stress(time)

Goal: predict the variations in response due to the particular
arrangement/configuration of entities in the sample.
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Neural networks - basics/background

The simplest neural network (NN) is a multilayer perceptron (MLP), a
directed graph of densely connected nodes organised in layers. Inputs are
weighted, summed and transformed to by non-linear ramp/switch-like
activation functions.

j=f (Z wixi + bj) @ /@ layer

\ input

linear transform
The parameters w, b are trained via layer
backpropagation and stochastic descent. / \ * node
NN are compounded trainable affine output

transforms with non-linear maps & can

be compact universal approximators.

A NN is basically a functional form to be fit with chosen inputs, output, &
information flow. Like LEGOS™, modular layers with particular characteristics

can be linked to create architectures that follow physical principles &
inspired by traditional modeling frameworks.
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Deep learning: convolutional neural networks

One of the types of specialized layers is convolution, which relies of spatial or

temporal correlation in the data. Convolution addresses many of our challenges:

» provides deep featurization of the image relevant to the Qol

» approximate differential operators to assist emulating the IBVP
Convolution with a kernel is a standard technique in (time) signal and
(spatial) image processing that has been adapted to ML.

Size of kernel < size of image
For example, filters can:

» Smooth/filter noise: convolving an image
with a Gaussian kernel.

> Average/coarsen: multiplying with constant
moving patch

» Gradients and higher derivatives: filter
corresponding a finite difference stencil.

> Features: edge detection, clustering,
segmentation, ...

A convolutional NN trains the weights W and bias b for a (small) kernel and
multiple filters/kernels can detect multiple hidden features.

7/28



A hybrid CNN-RNN network for time evolution

To predict a static property we can apply a CNN to a microstructure
image. To predict the evolution of a system average we augment the
CNN with an RNN/NODE that models the loading/time dependence
to emulate the IBVP.

The encodes the image into a {1 : J :

. oading €(t;) microstructure ¢(xy)
latent space correlated with the Qol:
an evolving system average. It also
implicitly handles aspects related to
the governing PDE, e.g. spatial

derivatives. L ]

A RNN uses a causal time filter com-
bine the time-dependent loading in-
formation and the hidden image fea-
tures to predict the Qol. —_—

%ﬁ%‘
recurrent
Design question: l|:':'|

How many latent features should time evolution ‘mixing

the CNN reduce the image to?
... depends on the application.
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Predicting the response due to “hidden” features
Does the deep NN discover the hidden features?

A test problem where we know
what “hidden” microstructural fea-
tures the observable stress depends
on, e.g. average misorientation
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Predicting the particular response to microstructure

Using data from the ensemble of polycrystals, we can make
predictions of the mechanical response that are significantly
better than traditional homogenization theory.
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Physical symmetries
With the basic architecture in mind how satisfaction of physical
constraints and symmetries which is expected in physical models
and is necessary for conservation, stability, etc

How do we learn/impose physical constraints?

» Augment the dataset with many
examples of what should happen,
e.g. rotate the inputs and outputs
(soft and inefficient)

» Penalize loss / training objective
function (soft & introduces a
meta parameter and can be hard
to converge)

» Embed the symmetry in the NN
architecture so that the response
exactly preserves the symmetry

where Q is an orthogonal tensor (rota-
(can be hard to formulate)

tion) and K. is the.Kronecker product.

Q5 (1. 9) = + [ o (@R <), QR H(x) ax

)
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Objectivity and representation theory

We prefer to embed symmetries in the NN structure — so that they are
exact/not learned. Let's go back to classical theory [SPENCER,1980s]...

Material frame indifference for constitutive function M(A)

GM(A)G™ = M(GAG') ,

M model must commute with the symmetry op for every member G of
the orthogonal group.

Based on the spectral A = Z?Zl Aia; ® a; , and Cayley-Hamilton
theorems 1
A —tr(A)A” + 2 (tr? A — tr A?) A — det(A)l = 0

one can obtain a compact general representation/model form:

M(A) = oo(Z)l + ci(T)A + (T)A> = > c(T)A’

i

in form of unknown coefficient functions of invariants and a known
tensor basis. Inputs: scalar invariants Z & tensor basis B = {A° Al A%}
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A tensor basis neural network

A tensor basis neural network is an NN implementation of this
representation [LING JCP 2016]: where the coefficients are unknown
scalar functions of the invariants Z = {ly, I, ...}

M=> c(7)B,

i
and a final merge/sum layer
associates ¢; with the tensor
basis B = {A° Al ...}

Effectively a MLP mapping
invariants to coefficients +
a sum with a known basis.

It is adept at representing the
response with exact invari-
ance / avoiding the need for
data augmentation for sym-
metry. Merge: Ml: >ieB;

A TBNN looks like a component based NN albeit with a basis constructed

from the input. 13/28



An internal state variable neural ODE model
Premise: it is better to infer internal state variables, like damage,

than prescribe them a priori. So we augment the observable state
with hidden states that are learned. RIvLIN 1950’s

microstructure ¢(X) loading E(t)

¥ ~ Stress

invariants {Z(E, B} strain E

features ¢ > flow h = f(h, Z(E, E)) S = NNs(h7 E)

integration h = h + At f }-»[ potential ¥ = ¥(h, E) ] Flow

!
h = NNy(h, E)

¥

output S(t)

The hidden states/latent space can be augmented by

microstructural information.

RNN are locked into a particular time step. NODE have the time
scaling of the dynamical models & employ the same time

integrators. 14/28




Model variants and accuracy

CDF of errors for TB,

There are multiple ways of formulat-
potential, component

ing a general stress response:

P> potential, as in thermodynamics
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Graphs for microstructure + ODEs for evolution
We can combine a NODE & a Graph CNN to reduce the initial

microstructures to latent features ] ]
Microstructures with pores or hard

inclusions

microstructure ¢(X)

pooling

dense
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Mesh data & graph-based convolutional neural networks

If we have pixelated images as inputs, CNNs work for structured grid/rastered
image but the need interpolation for mesh-based fields and do not inherently
satisfy invariance Go (€, )G’ = o(GeG',GpG ") where ¢ is the initial
microstructure.

In a graph based representation the data is essentially lifted from the spatial
domain, that together with the fact that filters are permutationally invariant
leads to a level of invariance in the overall network.

Reducing the grains to nodes and shared
interfaces to edges has been shown effec-
tive. However this approach loses informa-
tion (eg the details of the grain and inter-
face geometry) and hence requires featur-
ization.

We have applied graph convolutions directly to the mesh topology. This
approach does not require featurization but can benefit from it. It does not
increase the number of parameters since the same kernels are being
employed.
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Graph-based convolutional neural networks
In contrast to pixel-based filters which have a sense of up-down-left-right, a
graph based filter only knows what are its neighbors and hence treats each as

equivalent i.e. spatial adjacency is traded for a neighbor-wise adjacency.

Wy wg Wy wq
Wy Ws We w1 w2 w1
W1 Wo W3 w1
CNN filter GCNN filter
x = a(Wx + b) x = a([>; wiAi]x + b)

The GCNN filter uses the same weights for all the neighbors (permutational
invariance) defined by adjacencies A;, hence it produces the same output when

the image is rotated.
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GCNNs vs. CNNs

GCNNs have similar performance to CNN with fewer parameters

and inherent invariance.

microstructure ¢(x) ‘

{badiug e(t,)}

convolution
convolution

recurrent

mixing

GCNN-RNN
filters ~ features

Convergence with number of filters

1

CORRELATION

m—

20/28



Feature boosting

GCNNs (and CNNs) can be boosted by embedding obvious
features into the image (or further down the CNN-RNN pipeline)

1
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ERROR

adding node volumes to image of orientation angles

The improvement is marginal but distinct for a NN that is already
fairly accurate.
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Multilevel graphs for microstructure

» discretization (mesh),
» clusters (data)

» sample (global).

Mesh adjacency:

1 if nodes i/, are neighbors
Aj =

0 else

Cluster assignment matrix:

1 if node i is in cluster Qg
Ski =
0 else

Reduction: V* =SV
Prolongation: ¢ = ST ¢*
Convolution: X = Conv(X,A)
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Multilevel graphs for microstructure
Goals: deep featurization and accomodate multiscale interactions.
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Full field predictions: convLSTM

An architecture similar to the CNN-RNN we used to predict system-level
evolution can be used to predict full-field (element/pixel level) evolution.

|nputs: pairs of history e(t;) image ¢(xr)
» $(X): image of initial
microstructure

> ¢(t): system level strain history

convolution

The image is fed to a
to process its latent features but

convolution
not reduce them to a list of scalars — each ‘,:I:'
Co

. . . onvolution
layer/filter output is also an image so ,‘:|:'|

that spatial relationships are preserved.

This initial condition-like input is combined _comvolution |

with the strain history in a recurrent- ConvLSTM ool
convolutional neural network, a convLSTM

[SHI NIPS 2017].

The output of the convLSTM is processed

by another CNN unit to produce output & (xy, t;)

Output: o (X, t) full field stress evolution
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Full field predictions
A convLSTM combines the RNN (time) and CNN (space) into PDE-like model

MICROSTRUCTURE TRUE STRESS

oL E

STRESS-STRAIN  PREDICTED STRESS

“‘.F—‘

R

TIME

MICROSTRUCTURE TRUE RATE

RATE-STRAIN PREDICTED RATE

[FRANKEL MLSciTech 2020]
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Conclusion
Applications:

» subgrid / multiscale surrogate
models

» structure-property exploration /
material optimization

» material uncertainty quantification

Open issues:

» architecture / meta parameter
optimization

> interpretability ( latent space / low
dimensional manifold)

» training burden / multifidelity
(experimental+simulation) data

rjones@sandia.gov
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Training data: sampling & convergence

Sampling over loading modes, microstructures, etc to obtain

sufficient data is expensive for a reasonably complex/expressive
NN.

3x4: slope:-0.23 —=—
5x12: slope:-0.34 —e—

1-CORRELATION

ERROR
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Error vs random
sampling of modes for
homogeneous material

With respect to sample size: steep decrease until number of
samples = number of parameters, then slow improvement. Similar
slow improvement with mode sampling.
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