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Overview: computational physics & mechanics
Motivation: compared to governing eqs. & numerical methods,
constitutive models are weakness of simulation

Goal: efficient accurate surrogate models of material processes

Everyone is doing machine
learning, it is easy and

sometimes useful.

- a paraphrase of George Box

Outline

Problems of interest
Architectures

A hybrid CNN-RNN
Tensor basis NN
Neural ODE
Graph CNN-RNN
ConvLSTM

Conclusion

Please ask questions

Which one is the ML prediction?

one is a “deep fake” 2 / 28



Microstructural problems of interest: problem statement
Premise: the state of each of these systems/processes can be encoded as
an image/field with multiple channels ϕ(X) predict the output QoI.

bubbles multi-phase polycrystal pores/inclusions
Classes of closure problems:

▶ property estimation: map initial image ϕ(X) to a static quantity ε, e.g.
diffusivity

▶ homogenization: map initial image ϕ(X) and forcing ϵ(t) to evolving
scalar quantity Ψ(t), e.g. energy

▶ field prediction: map initial image ϕ(X) and forcing ϵ(t) to an evolving
field σ(X, t), e.g. stress field

each are specialized PDE solves: e.g. regular domain, nominally homogeneous

loading, output QoIs scalars/system averages not fields.
Applications: subgrid models, structure-property exploration /optimization, &

material uncertainty quantification
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Microstructural problems of interest: challenges

Homogenization has challenges in common with many ML tasks:

▶ encoding the image into a compact,
representative latent space which serves as an initial
condition and avoids manual featurization

▶ handling the time evolution of the QoI in the IBVP,
e.g RNN (LSTM) / NODE

▶ imposing physical constraints & symmetries e.g.
rotational symmetries, 2nd law considerations

▶ interpretability of the latent space & other network
outputs – improved “trustworthiness”

▶ data sparsity / limited modality (low & limited data)
– go beyond training models to models.

▶ multifidelity / transfer learning

▶ noisy data

... but there is also specific domain knowledge coming

from classical theory we use to guide designs.
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Exemplars: RVEs of materials with microstructure
Polycrystalline materials

▶ entities: grains/crystals
▶ neighbor-neighbor

interface interactions
▶ input: orientation angles
▶ output: stress(time)

Composite materials

▶ entities: inclusions
▶ all to one inclusion-matrix

interactions
▶ input: phase (label)
▶ output: stress(time)

Goal: predict the variations in response due to the particular
arrangement/configuration of entities in the sample.
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Neural networks - basics/background

The simplest neural network (NN) is a multilayer perceptron (MLP), a
directed graph of densely connected nodes organised in layers. Inputs are
weighted, summed and transformed to outputs by non-linear ramp/switch-like
activation functions.

y j = f

 X
i

wijx i + bj

!
| {z }

linear transform

The parameters w , b are trained via
backpropagation and stochastic descent.
NN are compounded trainable affine
transforms with non-linear maps & can
be compact universal approximators.

input

output

layer

layer

layer

• node

A NN is basically a functional form to be fit with chosen inputs, output, &
information flow. Like LEGOSTM, modular layers with particular characteristics
can be linked to create architectures that follow physical principles &
inspired by traditional modeling frameworks.
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Deep learning: convolutional neural networks
One of the types of specialized layers is convolution, which relies of spatial or
temporal correlation in the data. Convolution addresses many of our challenges:

▶ provides deep featurization of the image relevant to the QoI
▶ approximate differential operators to assist emulating the IBVP

Convolution with a kernel is a standard technique in (time) signal and
(spatial) image processing that has been adapted to ML.

Size of kernel ≪ size of image

For example, filters can:

▶ Smooth/filter noise: convolving an image
with a Gaussian kernel.

▶ Average/coarsen: multiplying with constant
moving patch

▶ Gradients and higher derivatives: filter
corresponding a finite difference stencil.

▶ Features: edge detection, clustering,
segmentation, ...

A convolutional NN trains the weights W and bias b for a (small) kernel and
multiple filters/kernels can detect multiple hidden features.
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A hybrid CNN-RNN network for time evolution
To predict a static property we can apply a CNN to a microstructure
image. To predict the evolution of a system average we augment the
CNN with an RNN/NODE that models the loading/time dependence
to emulate the IBVP.

The CNN encodes the image into a
latent space correlated with the QoI:
an evolving system average. It also
implicitly handles aspects related to
the governing PDE, e.g. spatial
derivatives.

A RNN uses a causal time filter com-
bine the time-dependent loading in-
formation and the hidden image fea-
tures to predict the QoI.

Design question:
How many latent features should
the CNN reduce the image to?
... depends on the application.

latent encoding

time evolution

loading ϵ(ti) microstructure ϕ(xI)

convolution

convolution

...

pooling

dense

...

recurrent

recurrent

...

mixing

stress σ(ti)
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Predicting the response due to “hidden” features
Does the deep NN discover the hidden features?

A test problem where we know
what “hidden” microstructural fea-
tures the observable stress depends
on, e.g. average misorientation
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Predicting the particular response to microstructure
Using data from the ensemble of polycrystals, we can make
predictions of the mechanical response that are significantly
better than traditional homogenization theory.

Close to IC

Correlation of elastic response
(NN, Voigt and Reuss predic-
tions), NN on par with Hill av-
erage.

Far from IC
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Physical symmetries
With the basic architecture in mind how satisfaction of physical
constraints and symmetries which is expected in physical models
and is necessary for conservation, stability, etc

How do we learn/impose physical constraints?

▶ Augment the dataset with many
examples of what should happen,
e.g. rotate the inputs and outputs
(soft and inefficient)

▶ Penalize loss / training objective
function (soft & introduces a
meta parameter and can be hard
to converge)

▶ Embed the symmetry in the NN
architecture so that the response
exactly preserves the symmetry
(can be hard to formulate)

→
y y

→
Q⊠σ̄(t,ϕ) =

1

V

Z
σ (Q ⊠ ϵ(t),Q ⊠ ϕ(X)) dX ,

where Q is an orthogonal tensor (rota-

tion) and ⊠ is the Kronecker product.
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Objectivity and representation theory

We prefer to embed symmetries in the NN structure – so that they are
exact/not learned. Let’s go back to classical theory [Spencer,1980s]...

Material frame indifference for constitutive function M(A)

GM(A)GT = M(GAGT ) ,

M model must commute with the symmetry op for every member G of
the orthogonal group.

Based on the spectral A =
P3

i=1 λiai ⊗ ai , and Cayley-Hamilton
theorems

A3 − tr(A)A2 +
1

2

(
tr2 A− trA2

�
A− det(A)I = 0

one can obtain a compact general representation/model form:

M(A) = c0(I)I+ c1(I)A+ c2(I)A2 =
X
i

ci (I)Ai

in form of unknown coefficient functions of invariants and a known
tensor basis. Inputs: scalar invariants I & tensor basis B = {A0,A1,A2}.
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A tensor basis neural network
A tensor basis neural network is an NN implementation of this
representation [Ling JCP 2016]: where the coefficients are unknown
scalar functions of the invariants I = {I0, I1, . . .}

M =
X
i

ci (I)Bi

and a final merge/sum layer
associates ci with the tensor
basis B = {A0,A1, . . .}.

Effectively a MLP mapping
invariants to coefficients +
a sum with a known basis.

It is adept at representing the
response with exact invari-
ance / avoiding the need for
data augmentation for sym-
metry.

Basis:

Inputs:

Outputs:

Merge:

A

I B = {B0, B1}

I0 I1 I2

a(y00) a(y01) a(y02) a(y03)

a(y10) a(y11) a(y12) a(y13)

a(y20) a(y21) a(y22) a(y23)

c0 c1

M =
∑

i ciBi

A TBNN looks like a component based NN albeit with a basis constructed

from the input.
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An internal state variable neural ODE model
Premise: it is better to infer internal state variables, like damage,
than prescribe them a priori. So we augment the observable state
with hidden states that are learned. Rivlin 1950’s

microstructure φ(X) loading E(t)

convolution invariants {I(E, Ė} strain E

features ϕ flow ḣ = f̂(h, I(E, Ė))

integration h = h + ∆t f potential Ψ = Ψ̂(h, E)

derivative S = ∂EΨ

output S(t)

Stress

S = NNS(h,E)

Flow

ḣ = NNh(h,E)

The hidden states/latent space can be augmented by
microstructural information.
RNN are locked into a particular time step. NODE have the time
scaling of the dynamical models & employ the same time
integrators. 14 / 28



Model variants and accuracy

There are multiple ways of formulat-
ing a general stress response:

▶ potential, as in thermodynamics

S = ∂ENN(E,h)

▶ equivariant tensor basis

S =
X
i

NNi (E,h)Bi (E)

▶ components of a fixed basis

S =
X
i

NN(ij)(E,h)B(ij)

CDF of errors for TB,
potential, component
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Elastoplasticity
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Graphs for microstructure + ODEs for evolution
We can combine a NODE & a Graph CNN to reduce the initial
microstructures to latent features

microstructure φ(X)

convolution

convolution

...

pooling

dense

...

features ϕ

that become additional hidden
state variables in the NODE
flow evolution.

Microstructures with pores or hard

inclusions

Predictions vs. truth for min, mean,

max error
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Mesh data & graph-based convolutional neural networks

If we have pixelated images as inputs, CNNs work for structured grid/rastered
image but the need interpolation for mesh-based fields and do not inherently
satisfy invariance Gσ(ϵ,ϕ)GT = σ(GϵGT ,GϕGT ) where ϕ is the initial
microstructure.
In a graph based representation the data is essentially lifted from the spatial
domain, that together with the fact that filters are permutationally invariant
leads to a level of invariance in the overall network.

Reducing the grains to nodes and shared
interfaces to edges has been shown effec-
tive. However this approach loses informa-
tion (eg the details of the grain and inter-
face geometry) and hence requires featur-
ization.

We have applied graph convolutions directly to the mesh topology. This
approach does not require featurization but can benefit from it. It does not
increase the number of parameters since the same kernels are being
employed.
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Graph-based convolutional neural networks
In contrast to pixel-based filters which have a sense of up-down-left-right, a

graph based filter only knows what are its neighbors and hence treats each as

equivalent i.e. spatial adjacency is traded for a neighbor-wise adjacency.

w7 w8 w9

w4 w5 w6

w1 w2 w3

CNN filter
x = a(Wx + b)

w1

w1 w2 w1

w1

GCNN filter
x = a([

P
i wiAi ]x + b)

The GCNN filter uses the same weights for all the neighbors (permutational

invariance) defined by adjacencies Ai , hence it produces the same output when

the image is rotated.
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GCNNs vs. CNNs

GCNNs have similar performance to CNN with fewer parameters
and inherent invariance.

loading ε(ti) microstructure φ(xI)

convolution

convolution

...

pooling

dense

...

recurrent

recurrent

...

mixing

stress σ(ti)

GCNN-RNN

filters ∼ features

Convergence with number of filters
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Feature boosting

GCNNs (and CNNs) can be boosted by embedding obvious
features into the image (or further down the CNN-RNN pipeline)
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The improvement is marginal but distinct for a NN that is already
fairly accurate.
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Multilevel graphs for microstructure

▶ discretization (mesh),

▶ clusters (data)

▶ sample (global).

mesh X0 X1 X2 X3

clusters X∗
0 X∗

1 X∗
2 X∗

3

global F0 F

Mesh adjacency:

Aij =

(
1 if nodes i , j are neighbors

0 else

Cluster assignment matrix:

SKi =

(
1 if node i is in cluster ΩK

0 else

Reduction: V∗ = SV
Prolongation: ϕ = STϕ∗

Convolution: X = Conv(X,A)
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Multilevel graphs for microstructure
Goals: deep featurization and accomodate multiscale interactions.

Full

mesh X0 X1 X2 X3

clusters

global F

Vee
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1 X∗
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3

global F

Down
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3

global F

Reduced

mesh X0 X1
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global F
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Full field predictions: convLSTM
An architecture similar to the CNN-RNN we used to predict system-level
evolution can be used to predict full-field (element/pixel level) evolution.

Inputs: pairs of

▶ ϕ(X): image of initial
microstructure

▶ ϵ(t): system level strain history

The image is fed to a convolutional neural
network to process its latent features but
not reduce them to a list of scalars – each
layer/filter output is also an image so
that spatial relationships are preserved.

This initial condition-like input is combined
with the strain history in a recurrent-
convolutional neural network, a convLSTM
[Shi NIPS 2017].

The output of the convLSTM is processed
by another CNN unit to produce

ConvLSTM

history ‘(ti) image „(xI)

convolution

convolution

convolution

convolution

convolution

...

convolution

convolution

output ‡(xI , ti)

Output: σ(X, t) full field stress evolution
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Full field predictions
A convLSTM combines the RNN (time) and CNN (space) into PDE-like model
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Conclusion
Applications:

▶ subgrid / multiscale surrogate
models

▶ structure-property exploration /
material optimization

▶ material uncertainty quantification

Open issues:

▶ architecture / meta parameter
optimization

▶ interpretability ( latent space / low
dimensional manifold)

▶ training burden / multifidelity
(experimental+simulation) data

rjones@sandia.gov

26 / 28



References: rjones@sandia.gov
▶ J Ling, RE Jones, JA Templeton. Machine learning strategies for systems with

invariance properties JCompPhys (2016).
▶ RE Jones, JA Templeton, CM Sanders, JT Ostien. Machine learning models of

plastic flow based on representation theory CompModEngSci (2018)
▶ AL Frankel, RE Jones, C Alleman, JA Templeton Predicting the mechanical

response of oligocrystals with deep learning CompMatSci (2019)
▶ AL Frankel, K Tachida, RE Jones Prediction of the evolution of the stress field

of polycrystals undergoing elastic-plastic deformation with a hybrid neural
network model MachLearn:SciTech, (2020)

▶ AL Frankel, RE Jones, L Swiler Tensor Basis Gaussian Process Models of
Hyperelastic Materials JMachLearnModComp (2020)

▶ AL Frankel, C Safta, C Alleman, RE Jones, Mesh-based graph convolutional
neural network models of processes with complex initial states
JMachLearnModComp, (2021)

▶ RE Jones, AL Frankel, KL Johnson A neural ordinary differential equation
framework for modeling inelastic stress response via internal state variables,
JMachLearnModComp (2021)

▶ W Bridgman, X Zhang, G Teichert, M Khalil, K Garikipati, RE Jones, A
heteroencoder architecture for prediction of failure locations in porous metals
using variational inference, CMAME (2022)

▶ JN Fuhg, N Bouklas, RE Jones. Learning hyperelastic anisotropy from data via
a tensor basis neural network. JMechPhysSol (2022).

... new work on graph reduction forthcoming on arXiv.
27 / 28



Training data: sampling & convergence
Sampling over loading modes, microstructures, etc to obtain
sufficient data is expensive for a reasonably complex/expressive
NN.
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