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Abstract Modeling grain growth has been a subject of interest in computational material science, as it occurs in thermal-based
processing methods such as annealing and sintering. Kinetic Monte Carlo with Potts model is often used as an integrated computational
materials engineering (ICME) grain growth model and can generate high-fidelity synthetic microstructures. In this paper, we offer a
data-driven stochastic calculus perspective on the kinetics of grain growth and model the microstructure evolution through the lens
of stochastic differential equations, based on Langevin dynamics and Fokker-Planck equation to forecast the grain size distribution.
We demonstrate that our proposed approach agrees reasonably well with the hybrid Potts-phase field model using SPPARKS in
forecasting the long-term evolution of grain size distribution.
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1 Introduction

Integrated Computational Materials Engineering (ICME) models are powerful tools to study the process-structure-property linkages
at multiple length and time scales. Numerous ICME models have been developed to study material systems from quantum to
continuum scales. Quantifying local distributions of microstructures or configurations and mapping statistical ensembles to the
measurable properties at a larger scale become an important methodology in the simulations of multiscale systems. Describing
microstructures statistically and modeling their evolution have been one of the important topics in computational materials science.

Here, we propose a stochastic modeling approach to accelerate the predictions of statistical QoIs in material evolution, specifically
the statistical descriptors of microstructures such as grain size distribution of polycrystalline metals. Mathematically, the propagation
of statistical distributions can be modeled as continuous-time stochastic processes. We apply the Kramers-Moyal expansion to model
the evolution of probability density function (pdf) of the QoI along time. When only the first and second orders of the expansion are
considered, the model is simplified to the well-known Fokker-Planck equation. The Fokker-Planck equation is a deterministic partial
differential equation of pdfs, which is equivalent to the stochastic differential equation usually employed to model Langevin dynamics.
The dynamics of a statistical QoI is modeled by the Fokker-Planck equation as a one-dimensional continuous-time stochastic process,
where the drift and diffusion coefficients in the equation are estimated and calibrated using the available time-series dataset, collected
from ICME simulations for some period of time. Once calibrated, the Fokker-Planck equation can be applied to predict the dynamics
of pdfs for the statistical QoIs directly and very efficiently for a much longer time period, instead of continuously relying on the
actual ICME simulations. Thus the Fokker-Planck equation can be regarded as a stochastic reduced-order model (SROM) in our
approach. The advantage of the proposed SROM is that the predictions of statistical QoIs in the simulated material systems can be
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significantly accelerated because the time scale used in the Fokker-Planck equation can be higher than the ones in the ICME model,
whichever ICME model has been used to generate the training dataset.

The parameters of the SROM are the drift and diffusion coefficients. They need to be calibrated based on the ICME models.
With well-calibrated parameters, the SROM can predict the evolution of QoIs. In this work, the distributions of QoIs from the ICME
models as time series are divided into two time periods or stages. The data from the first stage are used to train and calibrate the
SROM, whereas the second stage is used to test the SROM performance. In the rest of this paper, we denote 𝑋 (𝑡) as a one-dimensional
QoI in an ICME model, where 𝑋 (𝑡) is considered as a continuous-time stochastic process and modeled using the Langevin equation.
The outline of the paper is as follows. Section 2 describes the 1-dimensional Fokker-Planck equation and provides the problem
statement. Section 3 describes the application in kinetic Monte Carlo with SPPARKS [23, 24] and numerical results of the proposed
SROM approach. Section 4 discusses and concludes the paper.

2 The Fokker-Planck equation

In this section, the background of uncertainty propagation using the Kramers-Moyal expansion and Fokker-Planck equation is
provided, as it is the backbone of our proposed methodology. The one-dimensional (1D) non-linear Langevin equation for stochastic
variable 𝑋 (𝑡), which is the QoI in this paper, provides the preliminary context which gives rise to the Fokker-Planck equation.
Following the notation of Risken [26] and Frank [6], the 1D non-linear Langevin equation reads

¤𝑋 = ℎ(𝑋, 𝑡) + 𝑔(𝑋, 𝑡)Γ(𝑡), (1)

where the Langevin force Γ(𝑡) is assumed to be a Gaussian distributed, white noise term with zero mean and 𝛿 correlation
function [17], i.e.

hΓ(𝑡)i = 0, hΓ(𝑡)Γ(𝑡 0)i = 𝛿(𝑡 − 𝑡 0). (2)

Here, h·i denotes the expectation, 𝛿(𝑡 − 𝑡 0) is the Dirac-delta function, and the intensity of noise is 1 by convention [29]. If
ℎ(𝑋, 𝑡) = 0 and 𝑔(𝑋, 𝑡) = 1, Equation 1 describes the Wiener process. There are two alternative ways to interpret the drift and
diffusion coefficients of the Fokker-Planck equation. The first is based on Itô calculus and the second is based on Stratonovich
calculus, depending on the existence of spurious or noise-induced drift [26]. For Itô calculus, 𝐷 (1) (𝑋, 𝑡) = ℎ(𝑋, 𝑡), whereas for

Stratonovich calculus, 𝐷 (1) (𝑋, 𝑡) = ℎ(𝑋, 𝑡) + 𝜕𝑔(𝑋, 𝑡)
𝜕𝑋

𝐷 (2) (𝑋, 𝑡). For both Itô and Stratonovich calculus, 𝐷 (2) (𝑋, 𝑡) = 𝑔2 (𝑋, 𝑡).
With Itô calculus, Equation 1 can be rewritten as 𝑑𝑋 (𝑡) = ℎ(𝑋, 𝑡)𝑑𝑡 + 𝑔(𝑋, 𝑡)𝑑𝑊𝑡 , where 𝑊𝑡 is the Wiener process, which is
the source of randomness [29]. 𝑋 (𝑡) is the QoI dependent on time, also referred to as the state variable. We restrict 𝑋 (𝑡) to be
1-dimensional, even though it can be generalized for higher dimensional QoIs. In the scope of this paper, the Itô calculus is used to
interpret the stochastic process in Equation 1, that is,

𝑑𝑋 (𝑡) = 𝐷 (1) (𝑋, 𝑡)𝑑𝑡 + 𝐷 (2) (𝑋, 𝑡)𝑑𝑊 (𝑡), (3)

where 𝑊 (𝑡), 𝑡 ≥ 0 is a scalar Wiener process, 𝐷 (1) (𝑋, 𝑡) and 𝐷 (2) (𝑋, 𝑡) are the drift and diffusion coefficients, respectively. The
stochastic process described in Equation 1 is a Markov process with 𝛿-correlated force; this Markov properties is destroyed if Γ(𝑡)
is no longer 𝛿-correlated [26].

The ordinary differential equation of pdfs based on the Kramers-Moyal expansion is a general model of the evolution of probability
distributions. The Fokker-Planck equation is a special case when only the first- and second-order spatial derivatives are considered.
The Kramers-Moyal expansion for the pdf 𝑓 (𝑋, 𝑡) associated with stochastic variable 𝑋 (𝑡) can be written as [26]

𝜕 𝑓 (𝑋, 𝑡)
𝜕𝑡

=

𝑛∑︁
𝑗=1

�
−𝜕
𝜕𝑋

� 𝑗
𝐷 ( 𝑗) (𝑋, 𝑡) 𝑓 (𝑋, 𝑡). (4)

where 𝑛 is the number of truncated terms in Kramers-Moyal expansion, 𝐷 ( 𝑗) (𝑋, 𝑡) is the Kramers-Moyal expansion coefficient. The
Pawula’s theorem [26] states that the Kramers-Moyal expansion may stop either after the first term or after the second term; if it does
not stop after the second term, then it must contain an infinite number of terms. With only the first two terms, the Kramers-Moyal
expansion is reduced to the Fokker-Planck equation as
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𝜕 𝑓 (𝑋, 𝑡)
𝜕𝑡

= − 𝜕

𝜕𝑋

h
𝐷 (1) (𝑋, 𝑡) 𝑓 (𝑋, 𝑡)

i
+ 𝜕2

𝜕𝑋2

h
𝐷 (2) (𝑋, 𝑡) 𝑓 (𝑋, 𝑡)

i
, (5)

where 𝐷 (1) and 𝐷 (2) are the drift and diffusion coefficients, respectively, and both are spatio-temporal functions.
Assume the evolution of the stochastic variable 𝑋 (𝑡), which is the QoI, can be modeled by the Fokker-Planck equation. This

assumption holds if 𝑋 (𝑡) obeys a Langevin equation with Gaussian 𝛿-correlated noise, it can be shown that all coefficients other than
drift and diffusion coefficients vanish, and the Kramer-Moyal expansion simply reduces to the Fokker-Planck equation (cf. [26], Sec-
tion 1.2.7). The Fokker-Planck equation is sometimes referred to as the backwards or second Kolmogorov equation in literature [25].
Furthermore, for the case of one stochastic variable QoI 𝑋 (𝑡) in Equation 1, it is always possible to convert the Langevin equation
from a multiplicative noise force 𝑔 to an additive noise force, through a transformation of variable (cf. [26], Section 3.3).

Theorem 1 ([17, 27, 13]) Denote the 𝑛th central moment as 𝑀 (𝑛) (𝑋, 𝑡), then

𝜕

𝜕𝑡
𝑀 (𝑛) (𝑋, 𝑡) = 𝑛!𝐷 (𝑛) (𝑋, 𝑡) + O(Δ𝑡2) (6)

Thus, the Kramers-Moyal coefficients can be estimated from sampling the time-series data as

𝐷 (𝑛) (𝑋, 𝑡) = lim
Δ𝑡→0

1
𝑛!Δ𝑡

h[𝑋 (𝑡 + Δ𝑡) − 𝑋 (𝑡)]𝑛i
���
𝑋 (𝑡)=𝑥

. (7)

It is noted that Theorem 1 follows from the Taylor series expansion in deriving Kramers-Moyal expansion. The evolution of mean
and variance can be modeled through the two following corollaries.

Corollary 1 The expectation of 𝑋 (𝑡), denoted as E[𝑋 (𝑡)],

E[𝑋 (𝑡)] :=
∫ ∞

−∞
𝑋 𝑓 (𝑋, 𝑡)𝑑𝑋, (8)

must satisfy
𝜕

𝜕𝑡
E[𝑋 (𝑡)] =

∫ ∞

−∞
𝐷 (1) (𝑋, 𝑡) 𝑓 (𝑋, 𝑡)𝑑𝑋. (9)

If the drift coefficient is a temporal function, only i.e. 𝐷 (1) (𝑋, 𝑡) = 𝐷 (1) (𝑡), then

𝜕

𝜕𝑡
E[𝑋 (𝑡)] = 𝐷 (1) (𝑡). (10)

Corollary 2 Assume that the drift coefficient is a temporal function, i.e. 𝐷 (1) (𝑋, 𝑡) = 𝐷 (1) (𝑡), then the variance of 𝑋 (𝑡), denoted as
V[𝑋 (𝑡)],

V[𝑋 (𝑡)] :=
∫ ∞

−∞
(𝑋 − E[𝑋 (𝑡)])2 𝑓 (𝑋, 𝑡)𝑑𝑋, (11)

must satisfy
𝜕

𝜕𝑡
V[𝑋 (𝑡)] = 2

∫ ∞

−∞
𝐷 (2) (𝑋, 𝑡) 𝑓 (𝑋, 𝑡)𝑑𝑋 (12)

If the diffusion coefficient is also a temporal function, i.e. 𝐷 (2) (𝑋, 𝑡) = 𝐷 (2) (𝑡), then

𝜕

𝜕𝑡
V[𝑋 (𝑡)] = 2𝐷 (2) (𝑡). (13)

2.1 Analytical solutions of Fokker-Planck equation

Here we present three simple analytical examples that can capture a wide range of phenomenon with increasing complexity. These
examples are the analytical solution of the one-dimensional Fokker-Planck equation as in Equation 5.
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The first example is a Gaussian pdf with no drift and constant diffusion parameter,

𝑓1 (𝑋, 𝑡) =
1

√
4𝜋𝐷𝑡

𝑒−
𝑋2
4𝐷𝑡 . (14)

It is easy to see that for 𝑓1 (𝑋, 𝑡), E[𝑋 (𝑡)] = 0, 𝐷 (1) =
𝜕E[𝑋 (𝑡)]

𝜕𝑡
= 0. V[𝑋 (𝑡)] = 2𝐷𝑡, 𝐷 (2) =

1
2
𝜕V[𝑋 (𝑡)]

𝜕𝑡
= 𝐷.

The second example is a Gaussian pdf with constant drift, where the mean is moving with a constant velocity and no diffusion,

𝑓2 (𝑋, 𝑡) =
1

√
2𝜋𝜎2

𝑒
− (𝑋−𝜇𝑡 )2

2𝜎2 . (15)

In 𝑓2 (𝑋, 𝑡) case, E[𝑋 (𝑡)] = 𝜇𝑡, 𝐷 (1) =
𝜕E[𝑋 (𝑡)]

𝜕𝑡
= 𝜇. V[𝑋 (𝑡)] = 𝜎2, 𝐷 (2) =

1
2
𝜕V[𝑋 (𝑡)]

𝜕𝑡
= 0.

The third example, which is the most general among these examples, is a Gaussian pdf with constant drift, where the mean is
moving with a constant velocity and constant diffusion, where the variance increases linearly with respect to time,

𝑓3 (𝑋, 𝑡) =
1

√
4𝜋𝐷𝑡

𝑒−
(𝑋−𝜇𝑡 )2

4𝜋𝐷𝑡 . (16)

For 𝑓3 (𝑋, 𝑡), E[𝑋 (𝑡)] = 𝜇𝑡, 𝐷 (1) =
𝜕E[𝑋 (𝑡)]

𝜕𝑡
= 𝜇. V[𝑋 (𝑡)] = 2𝐷𝑡, 𝐷 (2) =

1
2
𝜕V[𝑋 (𝑡)]

𝜕𝑡
= 𝐷.

2.2 Problem statement & Assumptions

Figure 1 provides a schematic overview of the proposed SROM method. First, the ROM needs to be trained, where the drift and
diffusion coefficients are calibrated using the predicted QoIs from ICME models of materials. After test and validation with additional
materials simulation data, the SROM then can predict the uncertainty propagation efficiently with a much longer time step than the
time steps used in the ICME models.

1d Fokker-Planck equation

ICME models

train test use

model the evolution of statiscal

microstructure descriptor

as a stochastic process

Fig. 1: The SROM models 𝑋 (𝑡), which is a statistical microstructure descriptor and QoI, as a stochastic process with Langevin
equation. The SROM is trained using the first part of the time-series dataset, i.e. the training dataset. After the drift and diffusion
coefficients are trained, the trained ROM is validated using the second part of the time-series dataset, i.e. the testing dataset. After
the SROM is trained and validated, it can be deployed to predict the pdf of QoI in the future.
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Some notable work to estimate the drift-diffusion parameters from experimental and computational time-series dataset include
noisy electrical circuit [9], stochastic dynamics of metal cutting [18, 15, 14], meteorological data for sea surface wind [28, 10] to name
a few. Interested readers are referred to the review paper of Friedrich et al. [7] for extensive multi-disciplinary applications across
many scientific and engineering fields. Here, we applied and extended the method into the field of computational materials science
with applications to microstructure evolution. We assume that the noise associated with QoIs are 𝛿-correlated, in order to preserve the
Markov property of the Langevin model. Furthermore, the noise is also assumed to be independent of the QoI 𝑋 (𝑡). In practice, the
noise is not strictly 𝛿-correlated, which results in Markov-Einstein time 𝜏𝑀𝐸 , such that for sampling intervals 𝜏 < 𝜏𝑀𝐸 , the Markov
property does not hold [17]. However, there has been proofs that the Markov assumption is a valid assumption, for example, in the
field of fluid mechanics with small-scale turbulence [25]. Some recent efforts are also noted in adopting Fokker-Planck equation for
non-Markovian process [11, 12]. Mousavi et al.[20] and Anvari et al. [1] discussed in great details regarding the Markov-Einstein
time scale 𝜏𝑀 – the minimum time interval over which the time series 𝑋 (𝑡) can be considered as a Markov process. Friedrich et al [7]
(cf. Section 2.2.5) also pointed out that the Markovian property is “usually violated by many physical systems”. Furthermore, we
assume that the drift and diffusion coefficients are temporal (but not spatial) functions, even though both time-independent [22] and
time-dependent coefficients [19] have been studied in the literature. Also, in this paper, we restrict the QoI 𝑋 (𝑡) to be 1-dimensional.

3 Normal grain growth with hybrid Potts phase-field in kinetic Monte Carlo

microstructure

statistical 

microstructure 

descriptor

transformation

solve Fokker-Planck

w/ calibr. coe s.

microstructure reconstruction

     inverse

transformation

rejection

sampling

microstructure evolution

ICME

Fig. 2: Conceptual map for applying SROM to kMC. First, a training/testing SPPARKS dataset is generated. From this dataset, the
grain size probability density distribution as a statistical microstructure descriptor is extracted. A truncated time-step 𝑡★ is imposed to
separate training and testing datasets (cf. Figure 1). A log-log transformation is applied to both the grain size as well as the time-step.
Using the (transformed) training dataset, we calibrate the drift and the diffusion coefficients in the Fokker-Planck equation, which
is the SROM. With the initial probability density of the log of grain size at log(𝑡★), we then solve the Fokker-Planck to forecast the
probability of the log of grain size in the future. An inverse transformation is applied to return to the grain size and the original time
domain, followed by rejection sampling to estimate the probability density of the grain size in time 𝑡 > 𝑡★. We then compare the
grain size distribution between the Fokker-Planck and the SPPARKS model. Note that using this predicted grain size distribution,
we could reconstruct an ensemble of statistically equivalent microstructures. The Fokker-Planck model predictions agree very well
with the SPPARKS kinetic Monte Carlo simulations.

In this example, the hybrid Potts-phase field model from Homer et al. [16] based on kinetic Monte Carlo SPPARKS framework [24]
is used to investigate the evolution of the grain area during the grain growth. The hybrid Potts-phase field model is applied on a
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simple two-component, two-phase system, where the bulk free energy of the system is described as [16]

𝐸𝑣 (𝑞, 𝐶) = 𝜆[(𝐶 − 𝐶1)2 + (𝐶2 − 𝐶)2] + 𝑎(𝐶 − 𝐶3)2𝑞𝛼 + 𝛼(𝐶4 − 𝐶)2𝑞𝛽 , (17)

where 𝜆 = 0.3, 𝐶1 = 0.25, 𝐶2 = 0.75, 𝐶3 = 0.05, 𝐶4 = 0.95, and 𝛼 = 0.5. A computational domain of 5000 pixel × 5000 pixel is used
to perform the 2D grain growth kMC simulation. 50 kMC simulations are performed for 20,000 Monte Carlo steps (mcs), where 40
Monte Carlo events are observed, with the last microstructure is obtained at 16,681.1 mcs. Time-step in kMC is an exponentially
distributed random variable [38], which is inversely proportional with the rate constant and typically generated from the uniformly
distributed seed.

Exploiting the fact that the log-normal distribution is one of the most commonly used distributions to characterize the grain size,
as well as the fact that in the kinetic Monte Carlo method, time-step is an exponentially distributed random variable, we apply the log
transformation to both grain size and time, i.e. 𝑋 → log 𝑋 , 𝑡 → log 𝑡, before modeling the QoI (i.e. 𝑋 after transformation) using
the Fokker-Planck equation.

The drift and diffusion coefficients are calibrated by simple linear regression, which minimizes the ℓ2 error, based on Corollaries 1
and 2. The initial and training pdfs are constructed using the kernel density estimation method with the normal kernel distribution.
The selected bandwidth is optimal for the normal kernel density [2]. The Tikhonov regularization is applied to the initial pdf to
reduce the chance of numerical divergent for the Fokker-Planck solver.

The Monte Carlo events from 46.5 mcs to 599.5 mcs are used as the training dataset, while the Monte Carlo events
from 744.375 mcs to 16681.1 mcs are used as the testing dataset. Specifically, the training dataset includes snapshots at
𝑡 ∈ {46.5, 60., 77.5, 100., 129.25, 166.875, 215.5, 278.375, 359.5, 464.25, 599.5} mcs. The testing dataset includes snapshots at
𝑡 ∈ {774.375, 1000., 1291.62, 1668.12, 2154.5, 2782.62, 3593.88, 4641.62, 5994.88, 7742.75, 10000., 12915.5, 16681.1} mcs. The
time 𝑡★ = 599.5 mcs is used to split the training and testing datasets. By simple linear regression, we obtained the constant drift and
diffusion coefficients, respectively, as 𝐷 (1) (𝑡) = 0.7320, whereas 𝐷 (2) (𝑡) = −0.02931.

Figure 3a shows the evolution of grain area pdfs before transformation, while Figure 3b shows the evolution of grain area pdfs after
transformation. Figure 4 shows the solution of the Fokker-Planck equation after the log transformation at three different snapshots:
Figure 4a at the beginning of the training dataset, Figure 4b at the end of the training dataset, and Figure 4c at the end of the testing
dataset. Excellent agreement with the testing dataset is obtained.

From the solution of the Fokker-Planck equation shown in Figure 4, we apply rejection sampling algorithm to draw samples
and reconstruct the pdf of the grain size, by inverting the log transformation, i.e. 𝑋 → exp(𝑋). Figure 5 shows the comparison
between the reconstructed pdfs from Fokker-Planck solution and the original pdfs from SPPARKS. It is observed that even though
the Fokker-Planck solution has a longer tail distribution, in general, the last testing pdf at 16,681.1 mcs agrees relatively well with the
reconstructed pdf from the Fokker-Planck solution. This demonstrates if the Fokker-Planck coefficients are well-trained, a prediction
about the evolution of the microstructural descriptor using the trained ROM can be made with a good level of accuracy.

4 Discussions & Conclusion

In this paper, we propose and successfully demonstrate the application of a SROM, formulated by Fokker-Planck equation, to a
normal grain growth with kinetic Monte Carlo simulations using SPPARKS. Specifically, we demonstrate that extrapolating the
grain size pdf in long time agrees very well with the SPPARKS simulations. The proposed SROM has also been applied to molecular
dynamics and phase-field simulation, but SPPARKS remains the most successful application so far [37]. It is noteworthy that even
though in this particular example, the simple linear regression is used to calibrate the drift and diffusion coefficients in ℓ2 loss
function, a more generalized black-box optimization approach, e.g. Bayesian optimization method [31, 36, 35, 32, 33, 34], could be
used for a more generalized loss function. Analytically, the solutions to some microstructure descriptors are well-known in the field
of materials science. In the case study of kinetic Monte Carlo for norml grain-growth problem, it is known that the average grain size
(isotropic grain boundary energies and mobilities) grows as 𝑡1/2, as described in Ng [21] and Breithaupt et al[3]. Interested readers
are referred to the works of Friedrich et al. [7, 17, 27, 9, 8] for various applications of stochastic method in time-series and estimation
the drift and diffusion coefficients of Fokker-Planck equations in low- and high-sampling rates. It remains questionable to us as to how
the log 𝑡 transformation yields a uniformly distributed random variable, even though mathematically, it is that 𝑒−Δ𝑡 = 𝑟𝑒1/𝑘 should
be uniformly distributed, because 𝑟 ∼ U[0, 1], 𝑘 is the rate constant [38], and Δ𝑡 is supposed to be an exponentially distributed
random variable. The issue remains an open question for future study.



4. DISCUSSIONS & CONCLUSION

(a) Evolution of grain area (before transformation) pdf in kMC simulation
shows a diffusion-dominant type of Fokker-Planck equation.

(b) Evolution of log grain area (after transformation) pdf in kMC simulation
shows a typical Fokker-Planck equation.

Fig. 3: Evolution of grain area pdf. before (Figure 3a) and after (Figure 3b) transformation.

(a) 46.5 mcs (b) 599.5 mcs (c) 16,681.1 mcs

Fig. 4: Evolution of log of grain area distribution by (a) kinetic Monte Carlo simulations and (b) Fokker-Planck equation with
calibrated coefficients at three different snapshots: beginning of training (Figure 4a), end of training and beginning of testing
(Figure 4b), and end of testing (Figure 4c).

This manuscript provides a numerical evidence that the grain growth in 2d, through SPPARKS, are perhaps related to a geometric
Brownian motion, where the logarithm of the grain can be modeled by a Brownian motion or Wiener process under Itô interpretation.
The relationship between Langevin equation and Anderson-Kubo process, Ornstein-Uhlenbeck process, Black-Scholes process or
geometric Brownian motion is fairly known (cf. Chapter 8 [30]), yet little has been brought into the materials science community.
Practically, it validates the numerical implementation of SPPARKS, which agrees with the theoretical mathematical modeling results
that has been long established in the literature [21, 3]. For those who wonder what this manuscript is related to data assimilation,
there is a direct connection between ensemble Fokker-Planck equation and ensemble Kalman filter; more specifically, ensemble
Kalman filter applies the sequential Markov chain Monte Carlo to solve the Fokker-Planck equation [5, 4], by viewing the dynamical
model as a stochastic differential equation with Itô calculus [5], as done in this study.
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(a) 46.5 mcs (b) 166.875 mcs

(c) 599.5 mcs (d) 2154.5 mcs

(e) 7742.75 mcs (f) 16,681.1 mcs

Fig. 5: Evolution of grain area distribution reconstructed by rejection sampling algorithm from the Fokker-Planck solutions.
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Proofs

Here, we present a short proof for Corollary 1. Assume vanishing boundary conditions at an exponential rate of the pdf, i.e.
𝑓 (𝑋, 𝑡) ∝ 𝑒−𝑋

2 ⇒ lim
𝑋→±∞

𝑓 (𝑋, 𝑡) = 0.

Proof Here, we integrate by part and utilize the vanishing boundary conditions of the pdf 𝑓 (𝑋, 𝑡) → 0 as 𝑋 → ±∞.
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If the drift coefficient is a temporal function 𝐷 (1) (𝑋, 𝑡) = 𝐷 (1) (𝑡), then the last equation simplifies to

𝜕

𝜕𝑡
E[𝑋 (𝑡)] = 𝐷 (1) (𝑡), (19)

as
∫ ∞

−∞
𝑓 (𝑋, 𝑡)𝑑𝑋 = 1. �

Here, we present a short proof for Corollary 2 by integrating by part and utilizing the vanishing boundary conditions of 𝑓 (𝑋, 𝑡).

Proof First, consider
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Observe that if the drift coefficient is a temporal function 𝐷 (1) (𝑋, 𝑡) = 𝐷 (1) (𝑡), then by Corollary 1,
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If the diffusion coefficient is also a temporal function 𝐷 (2) (𝑋, 𝑡) = 𝐷 (2) (𝑡), then Equation 20 becomes
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After a few algebraic manipulation, we obtain
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