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Three Main Findings

1. Imperfect models provide decision support

2. Users of high performing models sometimes miss subtle
but important errors

3. User expertise impacts response to model errors




.L model performance can be very high, surpassing
humans.




Computer vision models are being developed for
safeguards-relevant tasks

= Open-source image review




Computer vision models are being developed for
safeguards-relevant tasks

= Multi-modal information retrieval
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Computer vision models are being developed for
safeguards-relevant tasks

= Overhead imagery monitoring




Computer vision models are being developed for
safeguards-relevant tasks

= Surveillance camera review
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Computer vision models are being developed for
safeguards-relevant tasl . ..o

Open-source image review
Multi-modal information retrieval
Overhead imagery monitoring
Surveillance camera review

Localization and wayfinding



Key Research Questions

For the implementation of ML models to be effective, we need a
better understanding of the impact of Al/ML errors on human users

=\WWhen and how do errors in Al/ML outputs lead to errors in human
assessments?

"\What factors make it easier or harder for people to recognize errors?
"How do people develop appropriate levels of trust in the outputs?

"\What level of accuracy in the model outputs is necessary to support
acceptable levels of human/system performance?



We use human performance testing on visual search
tasks to test how humans interact with models




Manipulation of Model Output Accuracy
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Finding 1: Imperfect models provide decision
support
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As Model Performance Increases, So Does

Overall User Performance
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without aid was 79%.
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Finding II: Users of high performing models
sometimes miss subtle but important errors
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Average Proportion of Correct Participant Responses for Images
With Model Errors

As Model Performance Increases, User Ability to
Overcome Model Errors Decreases

]
‘| I|I||
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Average Proportion of Correct Participant Responses for Images
With Model Errors

As Model Performance Increases, User Ability to
Overcome Model Errors Decreases

False Positives False Negatives False Positives False Negatives

Model Produces Equal Proportions of Both Error Types Model Produces Only One Error Type

50% Correct Model m60% Correct Model = 70% Correct Model
B 80% Correct Model ®m90% Correct Model B95% Correct Model
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Finding 111: User expertise impacts response to
model errors
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Incorrect model outputs don’t hurt performance in domain-general task
Similar pattern observed for domain experts in domain-specific task
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Errors in decision support aids impact novice
users more than expert users

1

&é 0.9
S
8 20.8
S 8_0'7
5 $0.6
5%05
S ©0.4
o :80 3
S ®©
® 0.2
o
2 o

0

Target Present Target Absent 1alyGL I IGOGIIL 1 Al yYGL MUDGTIIL
Experts Novices

B Correct Decision Support Output MIncorrect Decision Support Output
B No Decision Support Aid

21



Errors in decision support aids impact novice
users more than expert users
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Discussion
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= Computer vision decision support can benefit users

= Users should remain vigilant even with very good models

» Users were less likely to notice false negatives, which is especially significant
for safeguards

* Model errors can have different impacts on users with different levels/types of
expertise

» \We encourage a systems-level approach to optimize human performance
while using a decision support tool, rather than just tool performance.
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