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Abstract

Recently, a surge of interest has been given
to quantifying epistemic uncertainty (EU),
the reducible portion of uncertainty due
to lack of data. However, few studies at-
tempt to directly evaluate the quality of
EU estimates. We adopt the definition of
EU as the difference in accuracy between
the optimal prediction and the current pre-
diction at a given point, and we propose
to evaluate the quality of EU estimates
based on how well they agree with the ob-
served accuracy gain when more data is
added. Our proposed evaluation procedure
also gives rise to a way of improving EU
estimates by learning a calibration map-
ping. We demonstrate our evaluation and
calibration method on real and simulated
datasets, where we assess and compare the
quality of two standard EU estimators ob-
tained from a Gaussian process classifier.

1 INTRODUCTION

Uncertainty quantification has received widespread
attention because of its importance in evaluating
and improving the reliability of machine learning
models. There are two sources of uncertainty: the
uncertainty due to the inherently random effects of
the data generating process (i.e., aleatoric) and the
uncertainty that can be reduced with the addition
of more data (i.e., epistemic).

Recently, efforts have been made to quantify the
contribution of epistemic uncertainty (EU), due to
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its natural application in active learning, out-of-
distribution (OOD) detection (Mukhoti et al., 2021),
and classification with delay (Senge et al., 2014).
However, there have been much fewer attempts to
evaluate the quality of EU estimates. Current stud-
ies that propose new EU estimators typically vali-
date the quality of their estimates via downstream
tasks such as active learning and OOD detection
(Postels et al., 2020). Proper evaluation of EU esti-
mates is further complicated by the fact that there
is no consensus on the precise definition of epistemic
uncertainty; see Postels et al. (2021) and Lahlou
et al. (2021) for two competing definitions.

In this work, we define the epistemic uncertainty in
a classification setting to be the difference in accu-
racy between the current prediction and the optimal
prediction at a particular point. We develop a pro-
cedure to measure the accuracy gain at each point
between our prediction using the current train data
and our prediction using a larger dataset, where the
accuracy gain serves as a proxy for the epistemic un-
certainty. We use it to introduce two ways to mea-
sure the quality of the EU estimates: the epistemic
expected calibration error (EECE) and the rank cor-
relation between the EU estimates and the accuracy
gain. Moreover, this also enables us to develop a
procedure for calibrating our EU estimates to reduce
the EECE. Using this evaluation procedure, we com-
pare and evaluate the quality of two standard EU
estimators from a Gaussian process classifier. Ad-
ditionally, we empirically show that we can improve
the quality of our EU estimates through calibration
on simulated and real data.

1.1 Related Work

There is a great deal of work on evaluating the qual-
ity of predictive uncertainty estimates, the sum of
the aleatoric and epistemic uncertainties. These in-
clude the expected calibration error (ECE), nega-
tive log likelihood, Brier score (Ovadia et al., 2019),
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OOD detection (Maddox et al., 2019), area under
the curve (Chen et al., 2019), area under the risk
curve (Brosse et al., 2020), and the performance of
these under dataset shift (Ovadia et al., 2019).

In contrast, there is much less work on evaluating
the quality of EU estimates. Frequently, no defini-
tion of EU is provided, so the evaluation is based on
either the usual predictive uncertainty metrics, or
simply the eye test. For example, Kendall and Gal
(2017) evaluate their EU estimates using the stan-
dard ECE. Nilsen et al. (2022) display the images
that have the highest and lowest estimated EU and
argue that the images with higher estimated EU are
visually harder to classify. Recently, OOD detection
has been a popular approach to evaluate the quality
of EU estimates (Postels et al., 2020, 2021; Mukhoti
et al., 2021). Although OOD detection is a quality
that good EU estimates should have, this evaluation
is incomplete since it does not evaluate the qual-
ity of the EU estimates on the in-domain data. In
any case, it is apparent that a formal definition of
epistemic uncertainty is important to meaningfully
evaluate the quality of its estimates.

Our work is more closely related to Lahlou et al.
(2021), who propose the definition of EU that we
use. However, they use the negative log-likelihood
as their loss for classification instead of the 0/1 loss.
Using the 0/1 loss enables us to develop a more di-
rect approach of evaluating EU estimates via the
EECE. They also propose using the rank correla-
tion between the EU estimates and the accuracy, but
note that this evaluation is only valid in the absence
of aleatoric uncertainty. We extend their approach
by taking the rank correlation between the EU esti-
mates and the accuracy gain.

2 DEFINITIONS OF
UNCERTAINTY

We focus on the binary classification setting. Sup-
pose we are given a training dataset Dtrain =
t(xi, yi)u

N
i=1, where xi P X and yi P t0, 1u, for some

input space X . For any point x P X , we assume the
corresponding label y P t0, 1u follows some distribu-
tion denoted by P (y|x). The Bayes optimal classifier
under the 0/1 loss is f˚(x) = arg maxyPt0,1u P (y|x).

Next, we give the following definitions of predictive,
aleatoric, and epistemic uncertainty of a classifier f̂
at a specific point. These definitions are a special
case of those given in Lahlou et al. (2021), modified
for the binary classification setting with the 0/1 loss:
Definition 1. The predictive uncertainty of

classifier f̂ at point x is given by

U(x) = 1 ´ P (f̂(x)|x)

Definition 2. The aleatoric uncertainty at a
point x is given by

A(x) = 1 ´ P (f˚(x)|x)

Definition 3. The epistemic uncertainty of a
classifier f̂ at a point x is given by

E(x) = U(x) ´ A(x)

= P (f˚(x)|x) ´ P (f̂(x)|x)

The epistemic uncertainty is the difference between
the accuracy of the optimal classifier with your cur-
rent classifier at a given point. This definition of
epistemic uncertainty is attractive for the following
reasons:

• It conforms to the idea that EU should repre-
sent the uncertainty that results from a lack of
data. Large epistemic uncertainty at a point in-
dicates that the optimal classifier is much better
than your current classifier at the given point.
As you gain more and more data, the classifier
will converge to the optimal classifier at that
point, causing the epistemic uncertainty to de-
crease to zero.

• It produces the identity U(x) = A(x) + E(x);
that is, the predictive (total) uncertainty can be
decomposed into the irreducible aleatoric uncer-
tainty and the reducible epistemic uncertainty.

• This definition has a straightforward, practical
application. Similar to how a good estimate of
predictive uncertainty is useful when it is pos-
sible to reject giving a predicction, a good es-
timate of epistemic uncertainty is useful when
it is possible to delay giving a prediction (until
more data is collected so that our prediction is
improved).

3 EPISTEMIC UNCERTAINTY
ESTIMATORS

A classifier learning algorithm L is a function that
takes in a dataset Dtrain and outputs a function
f̂ = L(Dtrain) where f̂ : X Ñ t0, 1u. Likewise,
an EU learning algorithm Lepi is a function that
takes in a dataset Dtrain and outputs a function
Ê = Lepi(Dtrain) where Ê : X Ñ [0, 1]. The out-
put Ê(x) should be an estimate of the EU associated
with prediction f̂(x).
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3.1 Estimation via Gaussian Processes

In this work, we will use a Gaussian process classi-
fication model to provide EU estimates, since Gaus-
sian processes are widely believed to provide high-
quality uncertainty estimates, which distinguishes it
from other powerful models such as deep neural net-
works (Ober et al., 2021). In binary Gaussian pro-
cess classification, given Dtrain = t(xi, yi)u

N
i=1, we

assume that the outputs are generated from latent
values which are Gaussian distributed; that is, for
i P 1 : N ,

yi = 1(gi + ϵi ą 0), ϵi „ logistic(0, 1),
g = (g1, . . . , gN ) „ N (0Nˆ1,KNˆN ),

Kij = k(xi,xj) for some kernel function k(¨, ¨)

We approximate the distribution of the training la-
tent values given the observed labels as p(g|y) «

N (g|µ,Σ) via variational inference and predict the
latent value g˚ of a new point x˚ as

p(g˚|y) =

ż

p(g˚|g)p(g|y)dg

«

ż

p(g˚|g)N (g|µ,Σ)dg,

= N (g˚|µ˚, σ
2
˚)

This yields the classifier

f̂GP(x˚) = arg max
y˚Pt0,1u

p(y˚|y)

where

p(y˚|y) =

ż

p(y˚|g˚)p(g˚|y)dg˚

=

ż

σ(g˚)N (g˚|µ˚, σ
2
˚)dg˚,

σ(a) = (1 + exp(´a))´1

We will consider two EU estimators:

Mutual Information:
ÊM(x˚) = H(p(y˚|y))

´

ż

H(σ(g˚))N (g˚|µ˚, σ
2
˚)dg˚

Entropy:

ÊE(x˚) = H(p(y˚|y))

where H(p) = ´p log p ´ (1 ´ p) log(1 ´ p). We will
use LGP, Lepi,M and Lepi,E to denote the learning
algorithms that produce f̂GP, ÊM, and ÊE, respec-
tively.

The mutual information, ÊM , is widely used as a
way to quantify EU (Hüllermeier and Waegeman,

2021). The first term in ÊM, the entropy, represents
the predictive uncertainty, while the second term,
the expected entropy, represents the aleatoric uncer-
tainty. Note that ÊE makes no effort to account for
the aleatoric uncertainty; however, it may be more
efficient than ÊM when the aleatoric uncertainty is
low. In practice, we compute these integrals using
Monte Carlo integration.

4 EVALUATION AND
CALIBRATION

4.1 Evaluation Metrics

Suppose we have a training dataset Dtrain, which we
use to train a classifier f̂ = L(Dtrain) and an EU
estimator Ê = Lepi(Dtrain). We are asked to provide
predictions and EU estimates for test points from
Dtest = t(xi, yi)u

T
i=1, and we desire to evaluate the

quality of our EU estimates. Based on Definition 3,
the direct way to evaluate the quality of our EU es-
timates is to measure the discrepancy between Ê(xi)
and E(xi).

We will not have access to E(xi) since it depends
on the true distribution P (yi|xi); instead, we must
approximate it using the observed labels yi. In this
section, we assume that we know f˚(xi) for each
test point xi. This allows us to approximate E(xi)

with the empirical improvement of using f˚ over f̂ .
Definition 4. Given a classifier f̂ and a pair (x, y),
we define the gain of the point x by

gain(x, y) = 1(f˚(x) = y) ´ 1(f̂(x) = y)

=

$

’

&

’

%

1 if f̂(x) ‰ y, f˚(x) = y

´1 if f̂(x) = y, f˚(x) ‰ y

0 else

The gain is 1 if the optimal prediction improves the
current prediction, ´1 if worsens, and 0 if stays the
same. Notice that the gain is an empirical version
of the EU in the sense that

E [gain(x, y)] = E [1(f˚(x) = y)] ´ E
[
1(f̂(x) = y)

]
= P (f˚(x)|x) ´ P (f̂(x)|x) = E(x)

where the expectation is taken over y with the true
conditional distribution P (y|x).

This motivates our first evaluation metric: we par-
tition the test points into M bins based on their
estimated EU and find the average gain and esti-
mated EU for each bin. We then take the average of
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Figure 1: Our larger dataset Daug fills in the circular region carved out in Dtrain, allowing us compute the
gain on Dtest.

the absolute differences, weighted by the number of
points in each bin.
Definition 5. Given a test dataset D =
t(xi, yi)u

T
i=1, a classifier f̂ , an EU estimator Ê, and

a partition tI1, . . . , IMu of intervals of [0,1], the
epistemic expected calibration error is given by

EECE =
1

M

M
ÿ

m=1

|Bm||gain(Bm) ´ Ê(Bm)|

where Bm =
!

i P 1 : T | Ê(xi) P Im

)

,

gain(Bm) =
1

|Bm|

ÿ

iPBm

gain(xi, yi),

Ê(Bm) =
1

|Bm|

ÿ

iPBm

Ê(xi), m P 1 : M

Notice the similarity with the definition of ECE
(Guo et al., 2017); the only difference is that we re-
place the empirical version of predictive uncertainty
the empirical version of EU. The EECE provides use-
ful information when we want to know how much the
predictions on a set of observations can be improved.
For example, if our EU estimator is calibrated, we
can make an informed decision about whether or not
it is worth it to delay making predictions until we
collect more data.

In some situations, we only desire that our EU esti-
mates are ordered correctly: Ê(x1) ą Ê(x2) implies
E(x1) ą E(x2). For example, we might be given a
fixed number of observations that we are allowed to
delay. This leads to our second evaluation metric:
the Spearman rank correlation coefficient between
the EU estimates and the gain:
Definition 6. Given a test dataset D =
t(xi, yi)u

T
i=1, a classifier f̂ , and an EU estimator

Ê, the epistemic correlation of Ê is given by

ρepi = rs

(
!

Ê(xi), gain(xi, yi)
)T

i=1

)

where rs is the Spearman rank correlation coeffi-
cient.

The epistemic correlation also has the advantage
that it directly compares the quality of two EU esti-
mators without the choice of the partition of inter-
vals. In addition, we also find that a higher epistemic
correlation also tends to result superior calibrated
EU estimates, which we will discuss in Section 5.

4.2 Computing the Evaluation Metrics

We can only evaluate the gain on test points for
which we know the optimal prediction. To give an
example where this is true, suppose we are given
the training dataset Dtrain shown on the left of Fig.
1, and we are asked to provide predictions and EU
estimates for Dtest shown on the right of Fig. 1.
The dotted lines show the decision boundary of our
learned classifier. Notice that our predictions can
be significantly improved, since Dtrain does not have
much data in the circular region that we are asked
to predict. If we had access to the larger dataset
Daug, shown on the middle of Fig. 1, then we could
compute the evaluation metrics defined in the pre-
vious section by replacing f˚ with f̂aug = L(Daug)

in Definition 4, since is f̂aug is close to optimal on
Dtest. We can think of Daug as the hypothetical fu-
ture data we would have if we were to delay making
our predictions.

4.2.1 Data Splitting Procedure

Drawing inspiration from the above illustration, for
our experiments, given a dataset D, we provide our-
selves with Daug by removing ball-shaped regions of
a fixed radius from the high density regions of D.
Specifically, in each iteration i, we identify a center
ci and obtain the set of points within a radius R of
ci, which we distribute in the following way:

• pi% of the points are added to Dtrain.
• qi% of the points are added to Dtest.4



• (1 ´ pi ´ qi)% of the points are combined with
Dtrain to form Daug.

Here, qi should be selected to be small enough so
that the assumption that f̂aug « f˚ on Dtest holds,
but large enough that there are enough points in
Dtest for a proper evaluation. Full detail of this pro-
cedure is given in Algorithm 1 in the Supplemen-
tary Material. See the left part of Fig. 2 for an
illustration of what the resulting sets can look like
in a simple case. On real data, we find data-rich re-
gions by sampling points and computing the number
of neighbors in the ball-shaped region around them;
more details are given in Section 5.4.

Note that we specifically choose the data-rich re-
gions of D to subset the ball-shaped regions, since
those are the regions of the input space that we are
most likely to be able to learn a near-optimal predic-
tor. However, even if the predictions are not opti-
mal, this experimental procedure is still meaningful
in the sense that measuring how well the EU esti-
mates match up with the improvement on a larger
dataset is still an informative procedure to assess
their performance.

4.3 Calibration Method

Our approach to splitting the datasets suggests an
approach to improve our EU estimates: we take
Dtrain and similarly create three calibration datasets:
Dtrain,2, Daug,2, Dtest,2 = t(xi, yi)u

T
i=1. We then

train a classifier f̂tr,2 on Dtrain,2 and another clas-
sifier f̂aug,2 on Daug, 2, calculate the epistemic un-
certainty estimates and gain in accuracy on Dtest,2
and use those results to learn a calibration mapping
γ : [0, 1] Ñ [0, 1], which we can then apply to our
EU estimates on Dtest. Specifically, for each inter-
val Im, we obtain the average accuracy gain of the
points whose estimated EU lie in the interval:

γm =
1

|Bm|

ÿ

iPBm

1(f̂tr,2(xi) ‰ yi)´1(f̂aug,2(xi) ‰ yi)

Bm =
!

i P 1 : T | Ê(xi) P Im

)

, m P 1 : M

Then for each test observation, we define γ̂i to be the
average accuracy gain of the points in the interval it
belongs to:

γ̂i = γmi
, mi =

M
ź

m=1

m1(iPBm), i P 1 : T

We then obtain our calibration mapping γ by per-
forming an isotonic regression where the inputs are
Ê(xi) and the outputs are γ̂i:

γ = IsotonicRegression
(

!

(Ê(xi), γ̂i)
)T

i=1

)
We use isotonic regression to learn the calibration
mapping simply because its popularity and ease of
implementation. See Guo et al. (2017) for other
methods.

4.3.1 Creating the Calibration Datasets

An open question is how exactly to partition Dtrain
to create the calibration datasets without informa-
tion about the evaluation procedure. One approach
is to search for a set of inputs to the procedure de-
scribed in Section 4.2.1. to partition Dtrain such that
the distribution of the EU estimates on Dtest,2 and
Dtest are similar, a process that would likely be quite
time-consuming. We leave the study on such delicate
splitting procedures for future work. Throughout
this paper, we will sidestep this issue by using the
procedure used to create the evaluation datasets as
the splitting procedure for the calibration datasets.
Nevertheless, in Section 5.3.2 and the Supplemen-
tary Material, we will explore two scenarios where
this assumption is not satisfied (i.e., the calibra-
tion datasets differ significantly from the evaluation
datasets). We also note that when we perform cali-
bration on the real data in Section 5.4, the pattern
carved out in the evaluation and calibration datasets
will likely be quite different, despite the same split-
ting procedure being used.

5 EXPERIMENTS

5.1 Large Scale Gaussian Process
Classification

We use the Gaussian process classification model to
make predictions and obtain uncertainty estimates,
since Gaussian Processes are widely held to produce
the high quality uncertainty estimates. However, the
traditional GP Classifier model does not scale well
with large amounts of data, necessitating the use
of large scale GPs. The most scalable approach is
through variational inference with inducing points.
This approach reduces the training cost from O(N3)
to O(m3) per minibatch, where m is the number
of inducing points (Liu et al., 2020). We use the
GPyTorch implementation of the method in (Wenzel
et al., 2019).

5.2 Experimental Methodology

For each dataset D, we follow the following steps in
our experiments:
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Figure 2: Toy Data

1. We create our evaluation datasets Dtrain, Dtest,
and Daug using the procedure described in Sec-
tion 4.2.

2. We train our base Gaussian process classifier
f̂tr = LGP(Dtrain), our two EU estimators
ÊM= Lepi,M(Dtrain) and ÊE= Lepi,E(Dtrain) and
our enhanced Gaussian process classifier f̂aug =
LGP(Daug).

3. For each EU estimator, we compute a partition
of twenty intervals I1, . . . , I20 over the range of
the EU estimates on Dtest. The intervals are
made so that each interval contains roughly the
same number of points.

4. For each EU estimator, we use the partition
I1, . . . , I20 to obtain a calibration mapping γ us-
ing the procedure described in section 4.3.

5. Having obtained our base classifier f̂tr, our im-
proved classifier f̂aug, our two EU estimators ÊM
and ÊE, and our two calibrated EU estimators
γM(ÊM) and γE(ÊE), we can now calculate our
evaluation metrics.

Further implementation details, such as the hyper-
parameters chosen to train the large scale Gaussian
process classifier, are given in the supplementary
material.

5.3 Toy Data

First, we will illustrate our evaluation method on
toy data. To generate our toy data, we first sample
N = 142, 693 points x1, . . . ,xN from the following
Gaussian mixture model with K = 38 ¨ 46 groups:

p(xi|zi = [j, k]) = N
(
xi

ˇ

ˇ [j, k], I2
)

p(zi) =
1

K
1(zi P t1, . . . , 38u ˆ t1, . . . , 46u)

We generate the corresponding labels by randomly
partitioning each cluster into equal groups. That

is, the labels y1, . . . , yN are generated according to

p(yi|zi = (j, k), w1, . . . , wK)

=

#

1(wj+46k ď K/2) if yi = 1

1(wj+46k ą K/2) if yi = 0

where w1, . . . , wK are a random permutation of the
index set t1, . . . ,Ku:

p(w1, . . . , wK) =
1

K!
1(wi P t1, . . . ,Ku , wi ‰ wj)

This results in a dataset D which consists of a dense
grid of points with a random pattern for the decision
boundary, shown in Fig. 2. We follow the method-
ology described in Section 5.2 to calculate our eval-
uation metrics. In the first step, we carve out non-
overlapping discs arranged in a grid, as shown in
the left portion of Fig. 2. Note that some of the
discs have fewer points removed than others; this is
done so that the test points have a wide range of
EU estimates. We can then repeat this process on
the untouched upper region of Dtrain to create the
calibration datasets, Dtrain,2, Dtest,2 and Daug,2 as
shown in the right portion of Fig. 2.

5.3.1 Results

In Table 1, we provide the evaluation metrics for
both methods, averaged over 6 seeds. The standard
deviation is given after the ˘ symbol. We see that
ÊE has superior epistemic correlation than ÊM, likely
because the test data does not contain many points
with high aleatoric uncertainty, which are the points
on the boundary between the two classes. We also
observe that ÊE, before calibration, has an extremely
high EECE, making it unsuitable as a direct esti-
mator for EU. However, after calibration, ÊE has a
lower EECE than ÊM. In general, we would expect
the method with the higher epistemic correlation to
be better suited to calibration, since calibration only
depends on the quality of the ranking produced by
the EU estimator.

Next, we will analyze the EECE in more detail. For6



Figure 3: Average Epistemic Uncertainty for each Interval on Toy Data.

Table 1: Evaluation Metrics on Toy Data

Method ρepi EECE Calib. EECE

ÊM 0.108 ˘0.023 0.0249 ˘̆̆ 0.002 0.0182 ˘ 0.005
ÊE 0.121 ˘̆̆ 0.028 0.393 ˘0.014 0.0152 ˘̆̆ 0.002

each interval, we obtain the average estimated EU,
the average calibrated EU, and the average accuracy
gain over the points in that interval. We visualize
this by plotting these quantities over the interval
number on the x-axis. We then average these val-
ues over six seeds; the results are displayed in Fig.
3; the curves are created by interpolating the points
using matplotlib’s default connecting method. For
each curve, we also show the standard deviation over
the six seeds by shading in the area with the corre-
sponding color. We do not display the curve for the
uncalibrated ÊE estimates because they are too large
and distort the graph.

From the red accuracy gain curves, although there
is a moderate amount of variance in the accuracy
gain at each interval for both methods, the increas-
ing trends verify their positive correlation with the
accuracy gain. Both of the yellow calibrated EU
curves match the red curve relatively well, but the
larger intervals tend to be more difficult to estimate,
as indicated by the larger standard deviation. No-
tably, ÊE performs better than ÊM, with the red and
yellow curves almost completely overlapping on the
first 7 intervals. We also see that ÊM before calibra-
tion tends to overestimate the accuracy gain, but it
is a decent rough estimator for the EU.

Overall, both methods are able to be calibrated to
achieve a small EECE, averaging a difference of less
than 0.02. This indicates that we are able to take
information about the EU of a region in the in-
put space and apply it to another region of the in-
put space. Even though the pattern of the decision
boundary for each part of the input space is random,
there appears to be a certain regularity to the EU.

5.3.2 Effect of Calibration Mismatch

As shown in Fig. 2, the evaluation datasets and the
calibration datasets resemble each other for our ex-
periments. Since we cannot ensure this in practice,
in the Supplementary Material, we explore two sit-
uations in which there is a mismatch between the
calibration and evaluation data. We consider two
modifications to our experiments:

1. The evaluation datasets remain the same as in
Fig. 2; for the calibration datasets, we carve
three large circles instead of twelve small circles.

2. The calibration datasets remain the same as in
Fig. 2; for the evaluation datasets, we mod-
ify Dtest by removing points with low aleatoric
uncertainty in some of the discs.

We find that in modification 1, the results do not
change dramatically; both EU estimators still per-
form relatively well. In modification 2, the perfor-
mance of ÊE decreases and ÊM is comparatively bet-
ter. Overall, our results indicate that calibration
can still be beneficial even when there is a mismatch
with the evaluation data.

5.4 Real Data: EMNIST-Letters and
Kuzushiji-49

We will consider two real datasets: Kuzushiji-49 and
EMNIST-Letters. Kuzushiji-49 is a Japanese char-
acter classification dataset with 270,912 observations
and 49 classes. EMNIST-Letters is an English letter
classification dataset with 131,600 observations and
47 classes. For each dataset, we use PCA to reduce
the dimensionality to 50 and convert it to a binary
classification problem by setting the even classes to
0 and the odd classes to 1.

We follow the procedure from Section 5.2 to calcu-
late our evaluation metrics. In the first step, where
we create the evaluation datasets, we note that un-
like the toy data where we could easily carve out
non-overlapping balls, the real datasets are high di-
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Figure 4: Average Epistemic Uncertainty for each Interval on Real Data.

Table 2: Evaluation Metrics on Real Data.

Dataset Method ρepi EECE Calib. EECE

EMNIST
ÊM 0.088 ˘ 0.02 0.0151 ˘̆̆ 0.003 0.0122 ˘ 0.0027
ÊE 0.108 ˘̆̆ 0.016 0.41 ˘0.03 0.0096 ˘̆̆ 0.005

K-49
ÊM 0.065 ˘0.015 0.0063 ˘̆̆ 0.001 0.0060 ˘ 0.0004
ÊE 0.101 ˘̆̆ 0.014 0.33 ˘0.019 0.0043 ˘̆̆ 0.001

mensional, making it impossible to do the same. In
addition, the density varies over the input space, so
we must search for the high density regions to carve
out. In our implementation, we search for regions of
high density by sampling random points, calculating
the number of points in a ball around them, and se-
lecting points that have a sufficient number of neigh-
bors. As a consequence of the fact that the balls
carved out will have some overlap, the evaluation
and calibration datasets will not resemble each other
as in the toy data. A complete description of how we
create the evaluation and calibration datasets can be
found in the Supplementary Material.

5.4.1 Results

Our results are similar to those of the toy data. From
Table 2, we see that ÊE has a higher correlation with
the gain than ÊM on both datasets, just as in the toy
data, although we note that ÊM does better on K-49
than EMNIST in terms of epistemic correlation. On
the other hand, the overall EECE for both meth-
ods is lower on K-49 than EMNIST. From Fig. 4,
we see the red average accuracy curve and yellow
average calibrated estimated EU curve have higher
variance on EMNIST than K-49, likely because K-49
has more than twice as much data. This results in
the lower EECE on K-49.

We see that ÊM tends to overestimate the accuracy
gain in EMNIST, and the calibrated EU curve im-
proves the EECE significantly. On K-49, ÊM already
estimates the accuracy gain curve quite well, averag-
ing a difference of only 0.0063. The calibrated curve
only averages a slightly lower EECE, but it also has
a lower standard deviation. In both datasets, cal-
ibrated ÊE achieves a lower EECE than calibrated
ÊM. From the y-axis of Fig. 4, we can see the im-
pact of the superior epistemic correlation of ÊE over
ÊM. The upper intervals for ÊE have larger accuracy
gain, and the lower intervals have an accuracy gain
of 0. This corroborates earlier work, such as Gal
et al. (2017), who find ÊE to be a superior acquisi-
tion function than ÊM in active learning.

6 CONCLUSION

We introduced a novel, yet simple approach to assess
the quality of EU estimates: remove points from the
dataset and measure the change in accuracy, then
measure how well the EU estimates match with this
change. Our results support the claim that the un-
certainty produced by GP’s is reliable; we find that
both EU estimators derived from the GP show a
positive correlation with accuracy gain and produce
low calibrated EECE’s. We find that the entropy
estimator outperforms the mutual information esti-
mator, likely due to the small amount of aleatoric
uncertainty in real datasets, although the latter can
be used as a direct EU estimator without calibra-
tion. Finally, we discover that EU estimates can be
calibrated: we can improve the EU estimates on a
region of the input space by measuring the change in
accuracy when we subset data from another region
of the input space.
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