This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

SAND2022-13941C

Sandia
=L SN National
R e Laboratories

a Precision Scalar Support In
Kokkos and Kokkos Kernels: An
Engineering Study and Experience

Evan Harvey, Reed Milewicz, Christian Trott,
Luc Berger-Vergiat, Siva Rajamanickam

U DEFARTMEMT QF -
©ENERGY NISH
Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology &
Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

Research Software Engineers in eScience Workshop (RSE-eScience-2022)

10 October 2022

-
VP 25 | kokk
E—
— \(\L I,I FPROJECT o o s
Icons courtesy of the Noun Project; Minnie Pigeon, Amythest

Studio, Juicy Fish, and Adrien Coquet lllustrations from Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering SolutionsfofiSandia,|LLC,{alwhollylowned!
Undraw.co (copyright 2022 Katerina Limpitsouni) and Draw.io. subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.

Engineering
Study

2 I Overview

In our paper, we present a two-
part study on the development
of a performance portability
library feature to support
science and engineering
applications.

JAnNn engineering study on the
technical implementation of the

feature.

JAN experience report, from :
an RSE perspective, on the Experience
challenges and lessons

Report

+ 1 What is Kokkos?

J A C++ programming model and software
library ecosystem for performance portability

> Implemented as a template library on top of CUDA,
OpenMP, HPX, ...

o Aims to be descriptive not prescriptive

> Aligns with developments in the C++ standard
> Replaces usage of CUDA, OpenMP, HIP, etc.

® kernels

& core |
i

1 Expanding solution for common needs of

modern science/engineering codes
o Math libraries based on Kokkos
o Tools which enable insight into Kokkos

. Open source and widely used across a
range of institutions and disciplines _ _
o Maintained and developed at https://github.com/kokkos And many types of hardware

{s}|

https://github.com/kokkos

s | Adding Half-Precision Floating Point Support to Kokkos

Exponent: 8 bits Mantissa (Significand): 23 bits
ﬁ—

SEeEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM

fp32
Exponent: 5 bits Mantissa (Significand): 10 bits Exponent: 8 bits Mantissa (Significand): 7 bits ‘
binaryl6 bfloatl6
Computational science and JA 16-bit floating point encoding I

machine learning researchers are [float encapsulates fp32
iIncreasingly interested in utilizing

half-precision to optimize and
scale their algorithms, could _
benefit from the addition of half- Kokkos::Experimental::bhalf_t

orecision support. encapsulates bfloat16 @

dKokkos::Experimental::half t
encapsulates binary16

« I What We Implemented in Kokkos: half t E

Jhalf tis either an alias to float or a
C++ class

Jhalf t acts like float via:

C++ built-in types

g

o

N

x"”f..--.--_-
/"‘, ’ \
trivially / , , |static_cast \
! =+, / \
copyable / \
e f__f'

 Tempa] =]\ ”x,l\ ocasting wrappers with forward

/ matnematical| [somrns it | declarations

: ‘ | half_t and bhalf_t casts |
standard brary | L pretcen | postic+s, - } ooperator overloadlng with compile-time

vclqﬁle I
L <, > <= >=1| &8&, I, ==, \ﬂe}-ﬁtﬂ branCheS

=, <<, >>

_1Volatile operations

_J1Mixed precision:

_ oT op half_t
ohalf top T @

7 I What We Implemented in Kokkos: bhalf t

] Uses the same code
as half t except for:

oUnderlying data-type
encodes bfloat16 via
template argument

oCasting wrappers are
overloaded to call bfloat16
Intrinsics

CUDA

floating_point_wrapper<__half=

+ val: FloatType

floating_point_wrapper<__nv_bfloat16>

+ val: FloatType

SYCL

floating_point_wrapper<sycl::half=

+ val: FloatType

HIP

floating_point_wrapper<__half=

+ val: FloatType

7%
Experienc

9 ‘ Lesson Learned: Stay Engaged with Real Users and Their
Needs

T
i . . OAK RIDGE A |l Lawrence Livermore
Sandia|National Laboratories %_Naﬁonﬂ] Laboratory Argorlne “ LJ National Laboratory

50 AAA ARA AAR |

Feature development for scientific software libraries should

be grounded in the needs of real users. Proactively

identify prospective stakeholders and engage with them
frequently to gather requirements. *‘

I I Em B

0 | Lesson Learned: Choose Development Methodologies

Carefully

choice of development
methodology, and
consider both your
individual needs as a
developer and those of |
your customers — \
different tasks may
require different
approaches. ¥

Be intentional in the !

1 | Lesson Learned: Pay Down Technical Debt Early and

Often
It is important to pay ;

down technical debt
by refactoring early
and often. Of
particular note when
developing scientific
software libraries,
latent technical debt
can emerge in public
interfaces and, once
In place, is persistent
and hard to remove.

YeaH, Im TRYING To Fix THE PRoBLEms I

CReATED wHEn [TRIED To Fix THE PRoBLEMS I

CREATED WHEN I TRIED To FIX THE PRoBIEMS
T CREATED WHEW...

|l esson Learned: Know Your Tools

As an RSE, know your
tools. Case in point,
modern programming *_°
languages have AN
powerful and flexible
features, but they can

also be a source of
complexity that must be
managed. Knowing

what language features

to use and when is a

key part of good

cnfhwara Arrafternanchin

€

13 ‘ Acknowledgments

* For questions and comments, feel
free to reach out to me at
eharvey@sandia.gov

*| would like to thank my mentors
* Reed Milewicz
* Christian Trott
» Siva Rajamanickam

* Qur sponsor
» Exascale Computing Project

- Lastly, | would like to thank my
manager

mailto:eharvey@sandia.gov

