
Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology &

Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell

International Inc., for the U.S.
Department of Energy’s National

Nuclear Security Administration under
contract DE-NA0003525.

Half-Precision Scalar Support in
Kokkos and Kokkos Kernels: An
Engineering Study and Experience
Report

Research Software Engineers in eScience Workshop (RSE-eScience-2022)

10 October 2022

Evan Harvey, Reed Mi lewicz, Chr is t ian Trot t ,
Luc Berger-Verg ia t , S iva Rajamanickam

Icons courtesy of the Noun Project; Minnie Pigeon, Amythest
Studio, Juicy Fish, and Adrien Coquet Illustrations from
Undraw.co (copyright 2022 Katerina Limpitsouni) and Draw.io.

SAND

SAND2022-13941CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Overview

In our paper, we present a two-
part study on the development
of a performance portability
library feature to support
science and engineering
applications.
An engineering study on the
technical implementation of the
feature.
An experience report, from
an RSE perspective, on the
challenges and lessons
learned.

2

Engineering
Study

Experience
Report

Engineeri
ng

Study

What is Kokkos?

 A C++ programming model and software
library ecosystem for performance portability
◦ Implemented as a template library on top of CUDA,

OpenMP, HPX, …
◦ Aims to be descriptive not prescriptive
◦ Aligns with developments in the C++ standard
◦ Replaces usage of CUDA, OpenMP, HIP, etc.

 Expanding solution for common needs of
modern science/engineering codes
◦ Math libraries based on Kokkos
◦ Tools which enable insight into Kokkos

 Open source and widely used across a
range of institutions and disciplines
o Maintained and developed at https://github.com/kokkos

4

Performance portability
from laptops to clusters to supercomputers

And many types of hardware

https://github.com/kokkos

Adding Half-Precision Floating Point Support to Kokkos5

S E E E E E E E E M

Exponent: 8 bits Mantissa (Significand): 23 bits

fp32

S E E E E E M M M M M M M M M M

Exponent: 5 bits Mantissa (Significand): 10 bits

binary16

S E E E E E E E E M M M M M M M

Exponent: 8 bits Mantissa (Significand): 7 bits

bfloat16
Computational science and
machine learning researchers are
increasingly interested in utilizing
half-precision to optimize and
scale their algorithms, could
benefit from the addition of half-
precision support.

A 16-bit floating point encoding
float encapsulates fp32
Kokkos::Experimental::half_t
encapsulates binary16
Kokkos::Experimental::bhalf_t
encapsulates bfloat16

What We Implemented in Kokkos: half_t

half_t is either an alias to float or a
C++ class
half_t acts like float via:
ocasting wrappers with forward
declarations
ooperator overloading with compile-time
branches

Volatile operations
Mixed precision:
oT op half_t
ohalf_t op T

6

What We Implemented in Kokkos: bhalf_t

 Uses the same code
as half_t except for:
oUnderlying data-type
encodes bfloat16 via
template argument
oCasting wrappers are
overloaded to call bfloat16
intrinsics

7

Experienc
e

Report

Lesson Learned: Stay Engaged with Real Users and Their
Needs

Feature development for scientific software libraries should
be grounded in the needs of real users. Proactively
identify prospective stakeholders and engage with them
frequently to gather requirements.

9

Lesson Learned: Choose Development Methodologies
Carefully

Be intentional in the
choice of development
methodology, and
consider both your
individual needs as a
developer and those of
your customers –
different tasks may
require different
approaches.

10

Lesson Learned: Pay Down Technical Debt Early and
Often
It is important to pay
down technical debt
by refactoring early
and often. Of
particular note when
developing scientific
software libraries,
latent technical debt
can emerge in public
interfaces and, once
in place, is persistent
and hard to remove.

11

Lesson Learned: Know Your Tools

As an RSE, know your
tools. Case in point,
modern programming
languages have
powerful and flexible
features, but they can
also be a source of
complexity that must be
managed. Knowing
what language features
to use and when is a
key part of good
software craftsmanship.

12

Acknowledgments

•For questions and comments, feel
free to reach out to me at
eharvey@sandia.gov

• I would like to thank my mentors
• Reed Milewicz
• Christian Trott
• Siva Rajamanickam

•Our sponsor
• Exascale Computing Project

•Lastly, I would like to thank my
manager

13

mailto:eharvey@sandia.gov

