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Abstract

Comparison of pure sinusoidal vibration to random vibration or combinations of the two is an 
important and useful subject for dynamic testing. The objective of this paper is to succinctly 
document the technical background for converting a sine-sweep test specification into an 
equivalent random vibration test specification. The information can also be used in reverse, i.e. to 
compare a random vibe spec with a sine-sweep, although that is less common in practice. Because 
of inherent assumptions involved in such conversions, it is always preferable to test to original 
specifications and conduct this conversion when other options are impractical.

The paper outlines the theoretical premise and relevant equations. An example of implementation 
with hypothetical but realistic data is provided that captures the conversion of a sinusoid to an 
equivalent ASD. The example also demonstrates how to account for the rate of sine-sweep to the 
duration of the random vibration.

A significant content of this paper is the discussion on the statistical distribution of peaks in a 
narrow-band random signal and the consequences of that on the damage imparted to a structure. 
Numerical simulations were carried out to capture the effect for various combinations of narrow-
band random and pure sinusoid superimposed on each other. The consequences of this are captured 
to provide guidance on accuracy and conservatism.
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Theoretical Background

Random vibe can be due to various sources of vibration typically propagated through structural 
connections while the sine sweep could be due to engine humming at different rpm over time. The 
random vibe environment is specified as ASD (Autospectral Density) as g^2 vs. Frequency 
(typically log scale), while the sine-sweep is specified as g vs. Frequency (typically linear scale). 
The overall premise for equivalencing the two is to consider how these inputs lead to resonance in 
the structure being tested. For simplicity, structural dynamic equations pertaining to a single degree 
of freedom (SDOF) structure will be used, but the results are universally applicable.

Amplification at resonance Q=1/(2) where  is the viscous damping factor. The half-power (3db) 
bandwidth (f) captures the frequency band around the resonant frequency fn within which most 
of the energy associated with resonance is concentrated: f =2fn = fn/Q. The time constant 
tn=T/(2) represents the duration for decay to 1/e of initial amplitude for free vibration (T is the 
period of vibration). It is also an indicator for the time needed for resonance to develop; in this 
application it is small enough for resonance to develop during the sine-sweep. The basic premise 
of equivalencing is to look at each frequency, consider the energy within the half power (3db) 
bandwidth (f), and evaluate the equivalent imparted damage (note: f= fn /Q).

Grms of a pure sinusoid of amplitude Gs is Gs/√2, Grms of response is therefore QGs/√2. Grms of 
a ASD (where Gxx is the ASD at frequency fn) within the half-power (3db) bandwidth f is √(Gxx 

f) = √(Gxx fn/Q).

Grms response of a SDOF oscillator to a narrow band (f) random vibe is captured by the Miles’ 
equation: Grms=√(QGxxfn/2). Note that this is similar to amplification factor x the Grms of input, 
Q x √(Gxx fn/Q), but differs by the factor √(/2). This is due to the fact that the peaks of the 
response to a narrow-band random vibe follows a Raleigh distribution due to the superposition of 
various frequencies and random phase.

The implication of this Raleigh distribution is the greater possibility of peak amplitudes that are 
farther from the mean. Since fatigue damage follows a power law, these larger peaks have a far 
more significant effect. Cap [1] did a detailed analysis with various fatigue damage parameters to 
determine the appropriate factor N to capture this effect. N is defined as the ratio between the 
peak of a pure sinusoid and the grms of the corresponding narrow-band random that provides the 
same damage (note: ratio of grms of pure sinusoid to grms of equivalent narrow-band = N /√2).

Our specifications are based on low-cycle-fatigue coefficient of 6.67, which corresponds to a 3dB 
increase for time compression of factor of 10. Cap’s numerical analyses [1] provided a N value 

≈ 2 for a fatigue coefficient of 6.67. This N is based on the following equivalencing that considers 



both the rms response and the consequence to fatigue damage between a sine tone of peak 
amplitude Gs and an ASD of Gxx:

From [1] Gs= N √(QGxxfn/2)/Q = N √(Gxxfn/2Q)

Therefore Gxx = 2QGs2/(fn N
) ≈ QGs2/(2fn) (assumed N ≈ 2) [Eq.1]

Note that ignoring N
 (assuming =√2) leads to a more conservative (higher) value of Gxx.

Equation 3-19 in document by Fackler (page 55) provides an equation for equivalent stress 

imparted =Cr√(QGxxfn/2). This is identical in form to the equations used here. This reference [2] 
also provides detailed discussion on numerous technical aspects relevant to this memo.

Equivalencing of Duration of Sine-Sweep vs. Random vibe

The time duration for which sine-sweep is within each subsequent half-power bandwidth is 
f/R=fn/QR=2fn/R, where R is the rate of sine-sweep (example: if sine sweep is between 1-4Khz 
for a 30min test, R=100Hz/min). If the equivalent random vibe test has a duration of t minutes, 
Gxx needs to be multiplied by (2fn/Rt)0.3 to account for the relative durations. The time-
compression factor 0.3 in the last equation depends on the relevant low-cycle fatigue parameter 
(0.3 for ASDs corresponds to 0.15 for G, and is inverse of the fatigue coefficient of 6.67 used).

It is now important to recognize that the Stage5 vibe occurs simultaneously with the sine-tone and 
therefore the ASDs need to be added. However, the individual sine-tones occur in sequence (at 
different points in time that add up to 30 min). 

Implementation Process with Example

The Specifications shown in Table 1 were used to illustrate the process. The moving sine-tone is 
to occur simultaneously with the Stage 5 random vibe ASD for a duration of 30 min. Hence the 
sine-sweep rate is to go from 1 to 4 kHz over 30 min (=100Hz/min). Damping factor is 0.05 
(Q=10). The ASD has a g-rms = 2.45 in the 1-4kHZ regime, comparable to the sine-tone g-levels.

Step1: Determine desired octave spacing based on half-power bandwidth (f). 

Step2: Convert the straight-line specs into octave-spaced data.

Step3: Convert each sine-tone into equivalent narrow-band ASD using [Eq1].

This is shown in Figure 1; dashed blue and green are original sine-tone and Stage5 data, solid 
green is octave-spaced Stage5 data and solid blue is sine-tone converted to equivalent ASD for 
each octave-spaced data point. It is now important to recognize that the Stage5 vibe occurs 
simultaneously with the sine-tone and therefore the ASDs need to be added. However, the 
individual sine-tones occur in sequence (at different points in time that add up to 30 min). 



Step 4: Each equivalent sine-tone ASD is added to the Stage5 ASD (solid blue & green lines in 
Figure 1) since they occur simultaneously. Result is shown in Figure 2 (original Stage5 ASD is 
shown in). 

Step 5: Since the different ASDs (examples shown in Figures 3a-3c) occur in sequence, they are 
combined using fatigue-time-compression algorithm (based on Miner’s rule and the time-
compression factor mentioned earlier).

Figure 4 shows the final combined specification (red) along with the original Stage5 spec and the 
sine-tone equivalent ASD separated from the Stage5 spec (same as solid blue line in Figure 1).

Table 1. Data (Specifications) used in Example

Original Sine-Tone Spec Original Stage5 Spec
Freq (Hz) (g) Freq (Hz) ASD (g^2/Hz)

1000 1.5 1000 0.002
1600 2 4000 0.002
2100 1
2500 1
3200 1.9
4000 2.2

       Figure 1. SineTone converted to ASD Figure 2. Total ASDs vs. Stage5 ASD



       Figure 3a. Total ASD at 2nd Time Interval Figure 3b. Total ASD at 8th Time Interval 

    Figure 3c. Total ASD at 14th Time Interval Figure 4. Equivalent Test Specification (red)



Appendix A Nonlinear Statistics and Equivalent Fatigue Damage

This section examines through numerical simulations how to account for the parameter N defined 

earlier [Eq. 1]. N captures the nonlinear effect of statistical distribution of peaks in a narrow-band 
random signal and the consequent damage imparted. The issues and the consequent effects are 
captured for both pure sine-tone and that superimposed on a random vibration. Effect of various 
fatigue damage coefficients is also demonstrated.  

 

Figure A1. Time-domain Realization of a Narrowband ASD of grms=1.0

Narrowband signal was created with ASD = 0.01g^2/Hz between 950 and 1050 Hz (bandwidth = 

f =2  fn = 100 Hz for fn = 1000Hz). Therefore grms = (100x0.01)^0.5=1.0. A realization of this 
ASD for a 10 second duration with sampling rate of 10000 is shown in Figures A1. A zoomed-in 
version of the time series is also shown to illustrate the modulated sinusoid.

Figure A2. Distribution of Peaks of the Narrow-band Random Signal (grms=1.0)



Figure A2 shows the histogram of 10033 peaks into 40 bins demonstrating Raleigh distribution 
with a peak value at 1.0 (equal to the grms of the signal) and max beyond 4.0. A normalized 
Raleigh distribution [Eq. 2] is superimposed on the Histogram (red line). The formula for Raleigh 
distribution of peaks (x) of a narrow-band random signal formula is shown below for a waveform 
of grms = . 

𝑃(𝑥/𝜎) =
𝑥

𝜎2𝑒
―𝑥2

2𝜎2  [Eq.2]

Figure A2 shows that the narrow-band random has many peaks above √2≈1.4 (which corresponds 
to the peak of a pure sinusoid of the same grms =1.0. This leads to a higher imparted damage since 
the low-cycle-fatigue damage law (damage = stress^b) exaggerates the effect of higher 
amplitudes. The exponent b depends on the type of failure; b=6.65 (ductile failure) is typically 
used in our analyses. Based on this Raleigh distribution of the sinusoid peaks, the corresponding 
damage can be calculated. An equivalent sinusoid (single frequency) that imparts the same damage 
can be determined by adjusting the peak of that pure sinetone. This equivalency leads to various 
values of the factor N, discussed earlier [Eq. 1] for corresponding values of b. These are shown 
in Figure A.2 (b=2, 4 & 16.65 corresponds to energy, fretting corrosion and quasi-brittle failure 
respectively, b = 6.65 leads to N ≈ 2 shown by the red line).

Figure A3. Factor N for Various Values of b

Figure A4 shows the time-domain realization of pure Sinusoid superimposed on a Narrowband 
ASD, each with grms=1.0. The narrow-band random had an Autospectral Density (ASD) of 0.01 
between 950 and 1050 Hz.m and the sinusoid had a peak amplitude of √2 at 1000Hz. The resulting 
signal has a rms value of ≈√2. The same zoomed-in portion is also shown to compare with the 
realization of only the narrow-band signal. Note that in contrast with Figure A1 (narrow-band 
random only) the new signal has many exceedences above 4g and a few above 5g.



A ‘rainflow’ analysis was done on several combined (sinusoid + narrow-band random) time-
domain signals each with correspondingly greater ratio of the g-rms values of the sinusoid to the 
narrow-band random signals. The signals with this ratio of 0 (random-only) and 1.0 (same g-rms) 
have been shown earlier in Figures A1 and A4. Signals with this ratio = 2.0 and 5.0 (g-rms of pure 
sine-tone = 5.0) were also generated and added to the narrow-band random.

Figure A4. Realization of pure Sinusoid superimposed on a Narrowband ASD

Figure A5 shows the histograms of the cycles from the ‘Rainflow’ analyses on the 4 signals 
described earlier (progressively increasing ratios). For comparison, the histograms were all 
normalized for the grms of the total signal being 1.0. It can be seen that the narrow-band random 
had a Raleigh distribution discussed earlier with a most probably occurrence near 1.0, when the 
pure sinusoid dominates (ratio=5) the distribution is more ‘normal’ with peak close to 1.4 (peak 
of a pure sinusoid of grms=1.0 is √2). On the other hand when the Sinusoid gets smaller compared 
to the narrow-band random, the distribution is progressively closer to that of the narrow-band 
random (blue line depicting Raleigh distribution). Since with decreasing ratio of sinusoid/narrow-
band-random the resulting distributions progressively deviates from that of the pure sinetone 
(single peak at √2), it can be presumed that N will decrease progressively from ≈2.0 to ≈1.0.

Figure A5. Distribution of Cycles for Signals with Different Sinusoid/Narrow-band Random



Figure A.6 shows this change of N for various ratio of sinusoid to narrow-band random using 
simulations described in the steps below. The total simulation time was extended to 100 seconds 
to get more statistically representative results.

 Signals were created by adding (in time domain) the narrow-band random signal to the sinusoid 
multiplied by various factors (0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0).

 ‘Rainflow’ analysis was done to determine the number of fatigue cycles of various magnitude; 
some of them are shown in Figure A5.

 Total damage for each combined signal was determined using the equation for damage above 
(Dtotal=(fatigue cycles^6.65))

 A total equivalent grms of a narrow-band random that would have the same damage was 
determined grmstotal= Dtotal1/6.65

 This grmstotal is due to both the original narrow-band random grmsrandom plus the sinusoid (of 
grms=1.0) converted to an equivalent narrow-band random with grmssine. Hence

 grmssine
2= grmstotal

2
 - grmsrandom

2

 by original definition N = sinusoid-peak / grmssine  = sinusoid-peak / √( grmstotal
2
 - 

grmsrandom
2) [Eq.3]

Figure A6 shows that N approaches the values corresponding that of the pure sinusoid for ratios 

approaching 5. The effect of N is insignificant (≈√2) for small values of sinusoid (based on 
relative grms values) and approaches 2.0 when the sinusoid is dominant.

Figure A7 shows the variation of N for various recreations of time-domain signals from the same 
ASD (due to randomly generated relative phase). The variation is greater for higher values of the 
fatigue coefficient (b) since that amplifies the effect of the few instances the signal has high 
amplitude. The variation is also greater for small relative values of the sinusoid since the 
denominator of Eq. 3 is small and hence subject to greater fluctuations for each generation of 
random signal from the same ASD.

For values of b<10, the variation is <5% for higher ratio of sinusoid to random, which is negligible 
relative to most other sources of errors in real-life data. For small ratio of sinusoid to random, if 
the goal is to convert a sinusoid to an equivalent narrow-band ASD (Gxx), it is conservative to 
assume the lower limiting value of √2 (i.e. simply ignore this issue), since per Eq. 1 a lower value 
of N would lead to a greater value of ASD.



Figure A6. Value of N for Various Ratio of Sinusoid to Narrow-band-random

Figure A7. Variation of N for Various Recreations of Narrow-band-random
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