

SAND2022-x

Sandia
National
Laboratories

User Challenges with Covariance Data

PRESENTED BY

Patrick Griffin, Laboratory Fellow, Org. 1000

Oct. 11, 2022

Nuclear Data Uncertainty Quantification Meeting
(NDUQWM) October 11-13, 2022

R&A#: xxxx

Approved for Unlimited Release

Name/Org: Patrick Griffin/SNL Date: 09/30/2022
Guidance (if applicable) _____

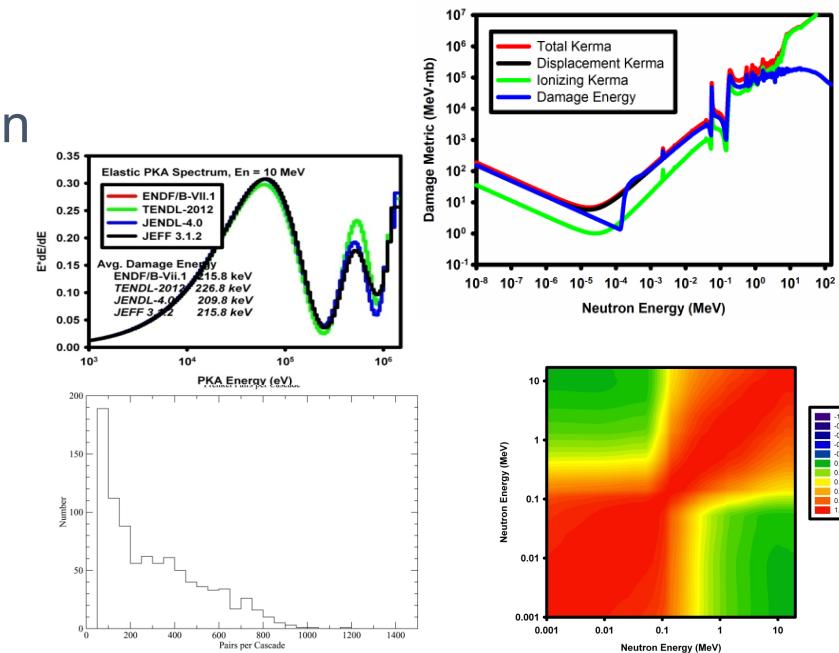
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

- Identify the Nuclear Data Contacts at Sandia
- Highlight Sandia Mission Areas that Use Nuclear Data
- My view of the highest covariance challenges the user community faces

The SNL NDWG webpage has more details and points to publications.

Sandia's NDWG Representatives

- Radiation Effects: Patrick Griffin, Lab Fellow, Advanced Science and Technology Division, Org. 1000
- Nuclear Forensics: Philip Dreike, Senior Scientist, Space Ground Systems Program, Org. 6740
- SNL NDWG Website:
<https://sandia.gov/nuclear-data/home-snл-ndwg>



- Ph.D. in nuclear physics from Ohio University in 1979.
- Over 40 years experience: in radiation modeling, neutron effects testing, radiation dosimetry, and radiation damage to materials.
- ASTM Fellow (Award of Merit)
- Appointment as National Associate of the National Academies
- U.S. representative for several IAEA-sponsored CRPs.
- Sandia Editor for the Defense Research Review. (DRR)

Key Sandia Nuclear Data Needs for Important Missions

- Radiation damage to semiconductors:
 - Main semiconductor materials: Si, GaAs, GaN, SiGe, SiC
 - Other materials:
 - Semiconductors: $[\text{HfSe}_2]$; Dielectrics: $[\text{SiO}_2, \text{HfO}_2, \text{Hd}_{0.5}\text{Zr}_{0.5}\text{O}_2]$; Dopants: $[\text{B}, \text{P}, \text{Sb}, \text{In}]$; Metals: $[\text{Au}, \text{Cu}, \text{W}]$; Capacitors $[\text{Ta}, \text{gel}]$
- Radiation damage metrics:
 - Displacement kerma; Frenkel pair production; defect evolution
 - Stochastics of radiation damage
 - Trapped charge; charge recombination
 - Recoil spectra
 - LET distributions
- Uncertainties in damage metrics:
 - Cross reaction correlations
- Relationship between a calc. damage metric and an observed damage mode

There are many nuclear data aspects to consider, e.g., how the data is used.

Covariance Challenges Users Face:

- My ENDF-extracted correlation matrix is not positive semi-definite!
- I need to rebin the covariance matrix into a different energy group structure.
- Treatment of angular dependent correlations with only the P1 term may not be adequate.
- I have large uncertainties and get unphysical values when I sample, i.e., negative cross sections or cosine values > 1.
- I have an input quantity that is, based on the physics considerations, not normally distributed. How do I propagate the resulting uncertainties?
- The covariances I get seem to be too small to represent the quantity.
- How do I address uncertainty in the recoil spectra. ENDF-6 does not even support covariance matrices for recoil spectra.
- So, I have to use a TMC approach, but I do not have random libraries for the nuclides of interest.
- How do I obtain the cross-isotope correlation data?
- How do I generate prior (calculated) neutron spectra covariances so that I can propagate uncertainty in response metrics?
- How do I generate covariance matrices for stopping power, damage partition function, etc.?

We face a wide range of challenges – many that can be addressed with improved processing codes and support tools.

Discussion of Issue 1:

- Issue: **My ENDF-extracted correlation matrix is not positive semi-definite!**
- Considerations:
 - A common occurrence – at Sandia and elsewhere.
 - Seen in fine group representations (>400 groups) even when using double precision.
 - Often results from precision limitations in data representation or in rebinning processes.
 - Easily addressed/fixed – via a Cholesky transformation
- Related Issues:
 - For spectra, there is also a unity normalization constraint. This imposes a summation constraint on the rows of a correlation matrix.
 - Here, the ENDF-6 Manual tells us what to check this normalization constraint and how to fix this if required.
 - Add this explicit guidance to the ENDF-6 Manual for the MF6 correlation data – and improve accuracy of code processing and results reporting.

Solution: algorithm improvements in processing codes and ENDF-6 Manual guidance.

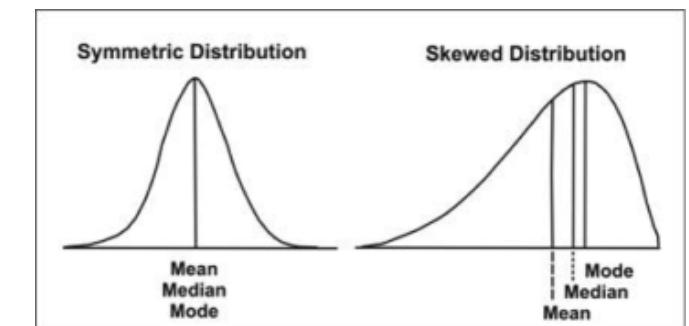
Discussion of Issue 2:

- Issue: I need to rebin the covariance matrix into a different energy group structure.
- Considerations:
 - This two-dimensional interpolation can be a challenge.
 - This is a common need, but the current version of codes such as NJOY-2016 (ERRORR/COVR modules) support this need.
 - The real issue may be problems with the resulting positive semidefinite attribute for the rebinned matrix. I see this all the time for dosimetry covariances and fission neutron spectra processed using NJOY-2016. This was addressed in Issue 1.
- Related Issues:
 - See Issue 1.

Solution: Improvements in NJOY-2016 processing code. More visibility about NJOY-2016 capabilities.

Discussion of Issue 3:

- Issue: Treatment of angular dependent correlations with only the P1 term may not be adequate.
- Considerations:
 - An important issue discussed at the recent CW2022 workshop.
 - NJOY – and MF34 – express this covariance only through the P1 component.
 - ENDF-6 Manual states:
 - “It is judged that covariances between the magnitude and shape are likely to be important only when theory plays a strong role in an evaluation.” A condition that is more often true these days.
 - “the covariance matrix in File 34 may refer to Legendre coefficients in the LAB coordinate system even when the data in File 34 are given in the CM coordinate system.”
 - “In ENDF-6 formats there is no provision for covariance components linking the angular distribution parameters for different materials, ... but is normally zero.” Given modern codes, is this still true?
- Needs:
 - Verify sufficiency of current approximations – requires some treatments that address the actual angular distribution – probably through TMC.


Path Forward: ENDF-6 format extensions.

Discussion of Issue 4:

- Issue: I have large uncertainties and get unphysical values when I sample, i.e., negative cross sections or cosine values $>+1$ or <-1 .
- Considerations:
 - Yes, the assumption of a normal distribution breaks down when there are parameter range constraints.
 - Normal/Gaussian distributions are typically used because they have easy analytic forms to support uncertainty propagation.
 - [Median = Mode = Average] for Normal distribution
 - Alternate distributions include truncated Gaussian, log-normal, Gamma distribution, etc.
 - When uncertainties are large, use of a log-normal distribution produces a bias – relative to use of a normal distribution.

Solution: Use the most physically meaningful distribution for your application. If not Gaussian, take the effort to properly propagate the uncertainty.

Discussion of Issue 5:

- Issue: I have an input quantity that is, based on the physics considerations, not normally distributed. How do I propagate the resulting uncertainties?

- Considerations:

- With great difficulty!
- Even with normal distributions, uncertainty propagation can be challenging when nonlinear expressions are involved.
 - Linear function of normal distributions have an exact uncertainty propagation
 - Complex expressions are approximated using a Taylor series expansion
- Alternate formulations exist for log-normal. Others can be derived for specific distributions.
 - Transformations can turn Gaussian distributions into many other distributions.
 - If the distribution is general (not analytical), you probably need to do TMC with random sampling.

Type of $pdf_{\xi'}$	Transformation: $q(\xi) =$
Normal(μ, σ)	$\mu + \sigma \xi$
Uniform(a, b)	$a + (b - a) \left(\frac{1}{2} + \frac{1}{2} \operatorname{erf}(\xi \sqrt{2}) \right)$
Log-normal(μ, σ)	$\exp(\mu + \sigma \xi)$
Gamma(a, b)	$ab \left(\xi \sqrt{\frac{1}{9a}} + 1 - \frac{1}{9a} \right)^3$
Exponential(λ)	$-\frac{1}{\lambda} \log \left(\frac{1}{2} + \frac{1}{2} \operatorname{erf} \left(\frac{\xi}{\sqrt{2}} \right) \right)$

Solution: Better tools for handling non-Normal distributions need to be made more generally available.

Discussion of Issue 6:

- **Issue: The covariances I get seem to be too small to represent the quantity/parameter.**
- **Considerations:**
 - A common problem.
 - Probably reflects model defect (in models) or unrecognized sources of uncertainty (USU) (in experiments).
 - Look harder at the sources of uncertainty. Add SME-based uncertainty components to address unrecognized uncertainty contributions.
 - Consult with others to confirm the conflict and to help isolate the deficiencies in the uncertainty characterization.

Path Forward: Socialize the issue.

Discussion of Issue 7:

- Issue: **How do I address uncertainty in the recoil atom spectra. ENDF-6 does not even support covariance matrices for recoil spectra.**
- Considerations:
 - A significant issue for Sandia response analysis.
 - Interim approaches:
 - Estimate uncertainty through library comparison.
 - Address using TENDL random libraries and TMC – but variation seems too small (see Issue 6).
- Implications:
 - Cost/benefit of addressing ENDF-6 format restrictions are marginal. Look forward and address within the context of GNDS format.
 - Need more experimental data to validate models.

Path Forward: Look to emerging GNDS format. Incorporate data for some trial isotopes and encourage community to develop processing tools.

Discussion of Issue 8:

- Issue: So, I have to use a TMC approach, but I do not have random libraries for the nuclides of interest.
- Considerations:
 - At Sandia, we have approached Dimitri Rochman and Arjan Koning to provide needed files for Silicon.
 - At Sandia, we should gain competence in using TALYS and the T6 Software System [TEFAL, TASMAN] so we can generate our own random files.
- Complications:
 - What do I do for the low-Z isotopes where, for low threshold energy reactions, the calculations cannot be trusted, e.g., N important for GaN response metrics?

Path Forward: Support the Nuclear Data Pipeline. Develop more in-house ND expertise.

Discussion of Issue 9:

- **Issue: How do I obtain cross-isotope correlation data?**
- **Considerations:**
 - This has been done for special cases by Dimitri Rochman – and published, e.g., for silicon and tin.
 - The priority for this needs to be established.
 - What range of applications require consideration of cross-isotope correlations?
 - Since the cross-isotope correlation is probably only of concern for close A/Z nuclides, does this only need to be considered for elemental damage response modes?
- **Complication:**
 - What about materials, like GaAs, where the two critical elements are very close in A/Z?

Path Forward: Establish priority – then plan tool development/maturation.

Discussion of Issue 10:

- Issue: **How do I generate *a priori* (calculated) neutron spectra covariances so that I can propagate uncertainty in response metrics?**
- Considerations:
 - Uncertainties are assigned using subject-matter expertise (SME) and past experience.
 - Correlation matrices follow the published process of functional fits, e.g., see by Williams or Trkov published work.
 - Fit to basis functions, e.g., Maxwellian, $1/E^{1-a}$, Madland-Nix fission, Gaussian fusion. Fit parameter uncertainty to match SME standard deviations. Use MC methods to sample parameter space, normalize to unity, form MC-based correlation matrix. Apply to calculated spectrum.
- Related Issues:
 - Published efforts to use radiation transport tools, e.g., MCNP, have failed miserably to produce credible energy-dependent uncertainties. See Issue 6.
 - Deficiencies in modeling uncertainty for spatial dimensions and material impurities may have been an issue.
 - The new versions of MCNP are expected to implement new options that support this application.

Path Forward: Validate approach for a wider range of neutron spectra. Look to future radiation transport sensitivity studies to support establishing a quantitative basis for energy-dependent standard deviations.

Discussion of Issue 11:

- Issue: **How do I generate covariance matrices for stopping power, damage partition function, etc.?**
- Considerations:
 - A Total Monte Carlo (TMC) approach is probably required.
 - Examples for silicon metrics (kerma, displacement, LET distributions) have been published.
 - Aspects of parameter correlation were shown to be critical – over 2X change.
- Related Issues:
 - Sources of uncertainty in stopping power are a challenge.
 - Experimental data not available for many ion/target combinations of interest.
 - Model uncertainty, e.g., for DPASS or CasP, codes is an area that should be addressed.
 - Correlations between stopping power for different materials needs to be addressed.
 - Cascades in polyatomic lattices with dissimilar A/Z components needs to be refined.

Path Forward: This area is accessible with current tools. It just needs attention/priority.

Questions?

