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2 ‘Agenda

¢ |dentify the Nuclear Data Contacts at Sandia

e Highlight Sandia Mission Areas that Use
Nuclear Data

e My view of the highest covariance
challenges the user community faces

The SNL NDWG webpage has more details and points to publications.




: ‘Sandia’s NDWG Representatives

 Radiation Effects: Patrick Griffin,
Lab Fellow, Advanced Science and
Technology Division, Org. 1000

* Nuclear Forensics: Philip Dreike,
Senior Scientist, Space Ground
Systems Program, Org. 6740

« SNL NDWG Website:
https://sandia.gov/nuclear-data/home-

snl-ndwg

* Ph.D. in nuclear physics from Ohio University in

1979.

* Over 40 years experience: in radiation modeling,

neutron effects testing, radiation dosimetry, and
radiation damage to materials.

* ASTM Fellow (Award of Merit)
* Appointment as National Associate of the National

Academies

* U.S. representative for several IAEA-sponsored

CRPs.

e Sandia Editor for the Defense Research Review.

(DRR)



https://sandia.gov/nuclear-data/home-snl-ndwg
https://sandia.gov/nuclear-data/home-snl-ndwg
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. Il\e{ldligt%lnodggage to semiconductors:

 Main semiconductor materials: Si, GaAs, GaN, SiGe, SiC

* Other materials:

« Semiconductors; [HfSe,]; Dielectrics: [SIO,, HfO,, Hd, 5Zr, 50,]; Dopants: [B, P, Sb, In]; Metals: [Au, Cu,
W]; Capacitors [Ta, gell; )

®
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« Radiation damage metrics:
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* Displacement kerma; Frenkel pair production; defect evolution
Stochastics of radiation damage
Trapped charge; charge recombination
Recoil spectra
LET distributions
* Uncertainties in damage metrics:

« Cross reaction correlations i
» Relationship between a calc. damage metric and an observed damage mode
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There are many nuclear data aspects to consider, e.g., how the data is used.




: ‘Covariance Challenges Users Face:

My ENDF-extracted correlation matrix is not positive semi-definite!

| need to rebin the covariance matrix into a different energy group structure.

Treatment of angular dependent correlations with only the P1 term may not be adequate.

| have large uncertainties and get unphysical values when | sample, i.e., negative cross sections or
cosine values > 1.

| have an input quantity that is, based on the physics considerations, not normally distributed. How
do | propagate the resulting uncertainties?

The covariances | get seem to be too small to represent the quantity.

How do | address uncertainty in the recoil spectra. ENDF-6 does not even support covariance
matrices for recoil spectra.

So, | have to use a TMC approach, but | do not have random libraries for the nuclides of interest.
How do | obtain the cross-isotope correlation data?

How do | generate prior (calculated) neutron spectra covariances so that | can propagate uncertainty
in response metrics?

How do | generate covariance matrices for stopping power, damage partition function, etc.?

We face a wide range of challenges — many that can be addressed with
improved processing codes and support tools.

®
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Discussion of Issue 1:

e Issue: My ENDF-extracted correlation matrix is not positive semi-definite!

®

e Considerations:

e A common occurrence — at Sandia and elsewhere.
e Seenin fine group representations (>400 groups) even when using double precision.

e Often results from precision limitations in data representation or in rebinning processes. ‘

e Fasily addressed/fixed — via a Cholesky transformation

e Related Issues:
e For spectra, there is also a unity normalization constraint. This imposes a summation
constraint on the rows of a correlation matrix. ‘
e Here, the ENDF-6 Manual tells us what to check this normalization constraint and how :
to fix this if required.
e Add this explicit guidance to the ENDF-6 Manual for the MF6 correlation data — and |

improve accuracy of code processing and results reporting.

Solution: algorithm improvements in processing codes and ENDF-6
Manual guidance.
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Solution: Improvements in NJOY-2016 processing code. More visibility
about NJOY-2016 capabilities.

Discussion of Issue 2: ‘

e Issue: | need to rebin the covariance matrix into a different energy group structure.

e Considerations:
e This two-dimensional interpolation can be a challenge.
e Thisisa common need, but the current version of codes such as NJOY-2016
(ERRORR/COVR modules) support this need. ‘
e The real issue may be problems with the resulting positive semidefinite attribute for the
rebinned matrix. | see this all the time for dosimetry covariances and fission neutron
spectra processed using NJOY-2016. This was addressed in Issue 1.

e Related Issues:
e See lssue l.
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Discussion of Issue 3:

e Issue: Treatment of angular dependent correlations with only the P1 term may not be
adequate.

e Considerations:
e Animportant issue discussed at the recent CW2022 workshop.
e NJOY —and MF34 — express this covariance only through the P1 component.
e ENDF-6 Manual states:
e “Itisjudged that covariances between the magnitude and shape are likely to be important only
when theory plays a strong role in an evaluation.” A condition that is more often true tese days.

e “the covariance matrix in File 34 may refer to Legendre coefficients in the LAB coordinate system

even when the data in File 34 are given in the CM coordinate system.”
e “In ENDF-6 formats there is no provision for covariance components linking the angular distribution
parameters for different materials, ... but is normally zero.” Given modern codes, is this still true?

e Needs:
e Verify sufficiency of current approximations — requires some treatments that address the actual
angular distribution — probably through TMC.

Path Forward: ENDF-6 format extensions.

®
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Discussion of Issue 4:

e Issue: | have large uncertainties and get unphysical values when | sample, i.e.,
negative cross sections or cosine values >+1 or <-1.

®

e Considerations:
e Yes, the assumption of a normal distribution breaks down when there are parameter
range constraints. ‘
e Normal/Gaussian distributions are typically used because they have easy analytic forms
to support uncertainty propagation.
e [Median = Mode = Average] for Normal distribution
e Alternate distributions include truncated Gaussian, log-normal, Gamma distribution, etc.
e When uncertainties are large, use of a log-normal distribution produces a bias — relative
to use of a normal distribution.

Symmetric Distribution Skewed Distribution

Solution: Use the most physically meaningful distribution for
your application. If not Gaussian, take the effort to properly

propagate the uncertainty. | Mode

Mean H
Median Median
Mode Mean
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Discussion of Issue 5:

e Issue: | have an input quantity that is, based on the physics considerations, not

normally distributed. How do | propagate the resulting uncertainties?

e Considerations:
e With great difficulty!

Type of pdfe: Transformation: g(£) =

Normal (1, o) p+of

Uniform(a, b) i+ (b—a) (% + %ﬁrf'if\*@})
Log-normal(t, o) exp(p + o)

Gammal(a, b)

Exponential( A)

3
ab(&y/a +1- )
—Llog (% + %EI‘T(%))

e Even with normal distributions, uncertainty propagation can be challenging when

nonlinear expressions are involved.
e Linear function of normal distributions have an exact uncertainty propagation

e Complex expressions are approximated using a Taylor series expansion
e Alternate formulations exist for log-normal. Others can be derived for specific

distributions.

e Transformations can turn Gaussian distributions into many other distributions.
e If the distribution is general (not analytical), you probably need to do TMC with random

sampling.

Solution: Better tools for handling non-Normal distributions need to be made

more generally available.
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Discussion of Issue 6:

e Issue: The covariances | get seem to be too small to represent the
quantity/parameter.

e Considerations:

e A common problem.

e Probably reflects model defect (in models) or unrecognized sources of uncertainty (USU) |
(in experiments).

e Look harder at the sources of uncertainty. Add SME-based uncertainty components to
address unrecognized uncertainty contributions.

e Consult with others to confirm the conflict and to help isolate the deficiencies in the
uncertainty characterization.

Path Forward: Socialize the issue.
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Discussion of Issue 7:

e Issue: How do | address uncertainty in the recoil atom spectra. ENDF-6 does not ‘

even support covariance matrices for recoil spectra.

e Considerations:
e Asignificant issue for Sandia response analysis.
e |nterim approaches:
e Estimate uncertainty through library comparison.
e Address using TENDL random libraries and TMC — but variation seems too small (see
Issue 6).

e Implications:
e Cost/benefit of addressing ENDF-6 format restrictions are marginal. Look forward and
address within the context of GNDS format.
e Need more experimental data to validate models.

Path Forward: Look to emerging GNDS format. Incorporate data for some trial
iIsotopes and encourage community to develop processing tools.
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Discussion of Issue 8:

e Issue: So, | have to use a TMC approach, but | do not have random libraries for the
nuclides of interest.

e Considerations:
e At Sandia, we have approached Dimitri Rochman and Arjan Koning to provide needed
files for Silicon. ‘
e At Sandia, we should gain competence in using TALYS and the T6 Software System
[TEFAL, TASMAN] so we can generate our own random files.

e Complications:
e What do | do for the low-Z isotopes where, for low threshold energy reactions, the
calculations cannot be trusted, e.g., N important for GaN response metrics?

Path Forward: Support the Nuclear Data Pipeline. Develop more in-house ND
expertise.
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Discussion of Issue 9:

e |ssue: How do | obtain cross-isotope correlation data?

®

e Considerations:
e This has been done for special cases by Dimitri Rochman — and published, e.g., for silicon
and tin. ‘

e The priority for this needs to be established.
e \What range of applications require consideration of cross-isotope correlations?
e Since the cross-isotope correlation is probably only of concern for close A/Z nuclides, does
this only need to be considered for elemental damage response modes?

e Complication:
e What about materials, like GaAs, where the two critical elements are very close
in A/Z?

Path Forward: Establish priority — then plan tool
development/maturation.
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Discussion of Issue 10:

e Issue: How do | generate a priori (calculated) neutron spectra covariances so that | can
propagate uncertainty in response metrics?

®

e Considerations:
e Uncertainties are assigned using subject-matter expertise (SME) and past experience.
e Correlation matrices follow the published process of functional fits, e.g., see by Williams or Trkov
published work.
e Fit to basis functions, e.g., Maxwellian, 1/E[3], Madland-Nix fission, Gaussian fusion. Fit ‘
parameter uncertainty to match SME standard deviations. Use MC methods to sample parameter
space, normalize to unity, form MC-based correlation matrix. Apply to calculated spectrum.

e Related Issues:
e Published efforts to use radiation transport tools, e.g., MCNP, have failed miserably to produce
credible energy-dependent uncertainties. See Issue 6.
e Deficiencies in modeling uncertainty for spatial dimensions and material impurities may have
been an issue.
e The new versions of MCNP are expected to implement new options that support this application.

Path Forward: Validate approach for a wider range of neutron spectra. Look to future
radiation transport sensitivity studies to support establishing a quantitative basis for
energy-dependent standard deviations.
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Discussion of Issue 11:

e Issue: How do | generate covariance matrices for stopping power, damage
partition function, etc.?

e Considerations:
e A Total Monte Carlo (TMC) approach is probably required.
e Examples for silicon metrics (kerma, displacement, LET distributions) have been published.
e Aspects of parameter correlation were shown to be critical — over 2X change.

e Related Issues:

e Sources of uncertainty in stopping power are a challenge.
e Experimental data not available for many ion/target combinations of interest.
e Model uncertainty, e.g., for DPASS or CasP, codes is an area that should be addressed.

e Correlations between stopping power for different materials needs to be addressed.
e Cascades in polyatomic lattices with dissimilar A/Z components needs to be refined.

Path Forward: This area is accessible with current tools. It just
needs attention/priority.




Questions?




