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New Energy Storage Technologies are Critically Needed

◦ Energy storage will play an increasingly important role!

◦ Materials should be cost-effective, secure, and sustainable

◦ Large scale batteries must be affordable and safe
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designnews.com Y.E. Durmus et al. Adv. Energy Mater. 2000089 (2020).

Na >1000x more abundant than Li



Our Approach3

Develop enabling technologies for safe, low-cost, molten sodium batteries

Anode
Na → Na+ + e-

Cathode 
I3- + 2e- → 3I-

Attractive for resilient and reliable grid-scale energy storage:

• Employ earth-abundant materials (Na, Al, Cl, I)

• Molten Na: no dendrites up to 100 mA cm-2

• NaSICON separator, Na+ conductor

2Na + I3- → 2Na+ + 3I- E0
cell = 3.24 V

L. J. Small, A. Eccleston, J. Lamb, A. C. Read, M. Robins, T. Meaders, et al. J. Power Sources, 360, 569 (2017).



Why ‘Low Temperature’?4

Commercial molten sodium batteries are HOT! near 300 °C (Na-S) or 270 °C (ZEBRA).  

This newer chemistry operates near sodium’s melting point (98 °C), providing: 

• Lower Cost

• Greater reliability

• Lower Start-up Energy

While lower temperatures can improve cost and reliability, new materials challenges arise.
Here, we focus on the catholyte current collector.

Polymeric Seals

Current
Collector

M. M. Gross, L. J. Small, A. S. Peretti, S. J. Percival, M. A. Rodriguez and E. D. Spoerke. J. Mat. Chem. A, 8, 17012 (2020).

M. M. Gross, S. J. Percival, L. J. Small, J. Lamb, A. S. Peretti and E. D. Spoerke. App. Energy Mat., 3, 11456 (2020).



Molten Salt Catholyte

◦ Phase behavior, speciation, and Lewis acidity depend on 

composition of NaI/AlCl3 mixture

◦ Composition changes with state of charge (SoC)
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S.J. Percival, L.J. Small, and E.D. Spoerke. J. Electrochem. Soc., 165, A3531 (2018).

S. J. Percival, R.Y. Lee, M.M. Gross, A.S. Peretti, L. J. Small, and E. D. Spoerke. J. Electrochem. Soc., 168, 036510 (2021).

R.Y. Lee, S.J. Percival, and L.J. Small. J. Electrochem. Soc., 168 126511 (2021).

M.M. Gross, S.J. Percival, R.Y. Lee, A.S. Peretti, E.D. Spoerke, and L.J. Small. Cell Reports Physical Science 2, 100489 (2021).

NaI/AlCl3
Phase Diagram

I3-

3I-
2e-

Cathode



Current Collector Optimization

In order to increase cycling rates, redesign current collector for cathode

What material? 

Desired: inert in molten salt and cost-effective:
◦ Molybdenum (Mo)

◦ Tungsten (W)

◦ Tantalum (Ta)

◦ Glassy Carbon (GC)
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Differences in charge transfer kinetics are minor compared to surface stability.

More catalytic?
Or…

More stable?
Catholyte Na Anode

NaSICON

NaI/AlCl3

Current
Collector

Will show:



3-Electrode Cell Design7

Benefits:
• Interchangeable electrodes; control area & material
• Probe specific interfaces 
• Stable composition (excess salt volume, capacity)

Before melt

Molten

Alternative:

In a battery: difficult to tell what component contributes most to overpotential.

WE

CE RE

Disk exposed 
through PTFE 

sheath

NaI/AlCl3
Na Na
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Materials Selection: Discharge on Disk Electrodes8

-5 mA cm-2 for 900 s

W GC

Ta

Mo

In acidic catholyte, Mo had the most stable voltage on discharge.

110 °C, 45% NaI/55% AlCl3, 7.5% SOC build

A.M. Maraschky et al. Tailoring Electrode Materials for Iodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.
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Materials Selection: Charge on Disk Electrodes9

+400 mV vs. OCV

W

GC

Ta

Mo

In acidic catholyte, GC had the highest, most stable current at positive potential.

A.M. Maraschky et al. Tailoring Electrode Materials for Iodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.

110 °C, 45% NaI/55% AlCl3, 7.5% SOC build

WE

CE RE

Na Na



Basic Catholyte: Better for NaSICON Separator10

Cycling life is longer when catholyte is Lewis Basic.
Basic catholyte is less aggressive to NaSICON.

110 °C, 2.5 mA cm-2, 7.5% SOC build, GFD current collector
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A.M. Maraschky et al. Impact of Catholyte Lewis Acidity at the Molten Salt-NaSICON Interface in Low-Temperature Molten Sodium Batteries. J. Phys. Chem. C. (2022) In Revision.

For batteries, salt composition had a big impact on performance
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But… Greater Electrode Instability in Basic Molten Salt11
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In basic catholyte, electrode instability on charge and discharge is much more severe.

-5 mA cm-2

-10 mA cm-2

A.M. Maraschky et al. Tailoring Electrode Materials for Iodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.

-10 mA cm-2



What prevents stable discharge? Especially in basic catholyte

Possible reasons:

1. Mass transport limitations (low I2/I3-

concentration)

2. Electrode surface change, such as 
precipitation, adsorption, or 
passivation
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NaI/AlCl3
Phase Diagram

I3-

3I-
2e-



Mass Transport Limit? Check Concentration Relaxation13

𝐶/𝐶ୠ
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Can diffusion refresh the electrode? Current interrupt14

Relaxation time suggests a species is slowly removed from the electrode surface.

A.M. Maraschky et al. Tailoring Electrode Materials for Iodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.

Discharge

Relax 
Concentration 

Gradient

Discharge

𝜏 =
𝛿ଶ

𝒟
~10 𝑠

𝑄௡ = 𝑄ଵ?

60 s

𝑄ଷ ≠ 𝑄ଵ

600 s

Increasing ‘relaxation’ time beyond 𝜏

-5 mA cm-2

up to Vcutoff

𝑄ସ ≅ 𝑄ଵ

Mo disk, 60% NaI, 50% SoC

𝑄ଵ



What prevents stable discharge? Especially in basic catholyte

Possible reasons:

1. Mass transport limitations (low I2/I3-

concentration)

- Relaxation: ~600 s
- Stability depends on electrode material

2. Adsorption or local phase instability on 
electrode surface
- NaI film covers surface?
- Another species adsorbs? 
Too thick (>>100s of mC/cm2)
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Cathode 
I3- + 2e- → 3I-
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Phase Stability Depends on Composition16
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Conclusions

◦ Phase stabilities limit the current and charge that an electrode can sustain in NaI/AlCl3

◦ Different materials show large differences in phase stability on electrode surfaces

◦ Basic catholyte shows greater local phase-instability, possibly precipitating NaI on the 

electrode surface during discharge
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A.M. Maraschky et al. Impact of Catholyte Lewis Acidity at the Molten Salt-NaSICON Interface in Low-Temperature Molten Sodium Batteries. J. Phys. Chem. C. (2022) In Revision.

A.M. Maraschky et al. Tailoring Electrode Materials for Iodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.
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Electrode Polarization on Charge 20

𝜂ୱ = 𝑉 − 𝐸଴ − 𝑖𝑅ஐ

Final V used:
After 900 s

GC had the lowest overpotential on charge at +10 mA cm-2.
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NaSICON Stability Probed with EIS in 3-Electrode Cell21
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Surface resistance on NaSICON interface increased only in acidic catholyte.

Electrode
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A.M. Maraschky et al. Impact of Catholyte Lewis Acidity at the Molten Salt-NaSICON Interface in Low-Temperature Molten Sodium Batteries. J. Phys. Chem. C. (2022) In Revision.



Current Collector Optimization

Task: redesign current collector for cathode

1. What material? 
◦ Molybdenum (Mo)
◦ Tungsten (W)
◦ Tantalum (Ta)
◦ Glassy Carbon (GC)

2. What high-surface area configuration? (microstructure, size)
◦ Foam
◦ Mesh
◦ Felt

22

Electrochemically active surface area modulates overpotential (voltage inefficiency) for given current.

Maximize surface area

More catalytic?
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Evaluation of High Surface Area Materials23
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Combining GC Foam with Mo Mesh lowers charge overpotential!
A.M. Maraschky et al. Tailoring Electrode Materials for Iodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.
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Cyclic Voltammetry Reveals a New Peak24



Tin Coating Improves Molten Sodium Anode

High interfacial resistance between 
molten Na and solid electrolytes typically 
prevents low-temperature operation

25

M. M. Gross, L. J. Small, A. S. Peretti, S. J. Percival, M. A. Rodriguez and E. D. Spoerke. J. Mat. Chem. A, 8, 17012 (2020).

M. M. Gross, S. J. Percival, L. J. Small, J. Lamb, A. S. Peretti and E. D. Spoerke. App. Energy Mat., 3, 11456 (2020).

Sn coating on NaSICON decreases resistance at the sodium-separator interface.

Bare NaSICON Sn Coating on NaSICON



Potentiostatic Experiments on Disk Electrodes26
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Glassy carbon showed very stable charge (+) current, while Mo had greatest (-) current on discharge.
May be due to differences in iodine/triiodide adsorption.

A.M. Maraschky et al. Tailoring Electrode Materials for Iodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.



Probing Different Interfaces after Salt Exposure27
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SEM Confirms Material Stability 28

Mo MeshGC Foam

After cycling and cleaning, no evidence of microstructural changes.

400 mm 400 mm

10 mm30 mm

A.M. Maraschky et al. Tailoring Electrode Materials for Iodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.


