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2 | New Energy Storage Technologies are Critically Needed

> Energy storage will play an increasingly important role!

o Materials should be cost-effective, secure, and sustainable

o Large scale batteries must be affordable and safe

designnews.com
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3 | Our Approach

Develop enabling technologies for safe, low-cost, molten sodium batteries

Attractive for resilient and reliable grid-scale energy storage:
- Employ earth-abundant materials (Na, Al, Cl, I)
* Molten Na: no dendrites up to 100 mA cm-2

» NaSICON separator, Na* conductor

L.J. Small, A. Eccleston, |. Lamb, A. C. Read, M. Robins, T. Meaders, et al. . Power Sources, 360,569 (2017).
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4+ | Why ‘Low Temperature’?

Commercial molten sodium batteries are HOT! near 300 °C (Na-S) or 270 °C (ZEBRA).
This newer chemistry operates near sodium’s melting point (98 °C), providing:

* Lower Cost

* Greater reliability Current
- Lower Start-up Energy ~ NaSICONj“ey
Molten Na /(( Nal-MH
Polymeric Seals Catholyte

While lower temperatures can improve cost and reliability, new materials challenges arise.
Here, we focus on the catholyte current collector.

M. M. Gross, L.J. Small,A. S. Peretti, S. . Percival, M.A. Rodriguez and E. D. Spoerke.J. Mat. Chem.A, 8, 17012 (2020).
M. M. Gross, S. . Percival, L. J. Small, J. Lamb, A. S. Peretti and E. D. Spoerke. App. Energy Mat., 3, 1 1456 (2020).




5 ‘ Molten Salt Catholyte

Nal/AlCL,

> Phase behavior, speciation, and Lewis acidity depend on Phase Diagram
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S.J. Percival, LJ. Small, and E.D. Spoerke. J. Electrochem. Soc., 165, A3531 (2018).

S.J. Percival, R.Y. Lee, M.M. Gross, AS. Peretti, L. |. Small, and E. D. Spoerke. J. Electrochem. Soc., 168, 036510 (2021).
R.Y. Lee, SJ. Percival, and L. Small. J. Electrochem. Soc., 168 126511 (2021).

M.M. Gross, SJ. Percival, R.Y. Lee, AS. Peretti, E.D. Spoerke, and L.J. Small. Cell Reports Physical Science 2, 100489 (2021).




6 I Current Collector Optimization
In order to increase cycling rates, redesign current collector for cathode

What material?

Current
Collector

Desired: inert in molten salt and cost-effective:

> Molybdenum (Mo)
ic?
. Tungsten (W) More g?talytlc.

o Tantalum (Ta) More stable?
o Glassy Carbon (GC)

Catholyte
Nal/AlCl,

NaSICON

Will show:

Differences in charge transfer kinetics are minor compared to surface stability.




7 | 3-Electrode Cell Design

In a battery: difficult to tell what component contributes most to overpotential.

Before melt i

WE
Alternative:

Disk exposed
through PTFE
sheath

RE

Benefits:

* Interchangeable electrodes; control area & material
» Probe specific interfaces

» Stable composition (excess salt volume, capacity)
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s | Materials Selection: Discharge on Disk Electrodes

-5 mAcm2 for 900 s
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In acidic catholyte, Mo had the most stable voltage on discharge.

A.M. Maraschky et al. Tailoring Electrode Materials for lodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.




9 | Materials Selection: Charge on Disk Electrodes

110 °C, 45% Nal/55% AlCl;, 7.5% SOC build

In acidic catholyte, GC had the highest, most stable current at positive potential.

A.M. Maraschky et al. Tailoring Electrode Materials for lodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.
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10 | Basic Catholyte: Better for NaSICON Separator

For batteries, salt composition had a big impact on performance
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Cycling life is longer when catholyte is Lewis Basic.
Basic catholyte is less aggressive to NaSICON.

A.M. Maraschky et al. Impact of Catholyte Lewis Acidity at the Molten Salt-NaSICON Interface in Low-Temperature Molten Sodium Batteries. J. Phys. Chem. C. (2022) In Revision.
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But... Greater Electrode Instability in Basic Molten Salt

Basic
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In basic catholyte, electrode instability on charge and discharge is much more severe.

A.M. Maraschky et al. Tailoring Electrode Materials for lodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.




12 I What prevents stable discharge?! Especially in basic catholyte

2e"
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Possible reasons:

1. Mass transport limitations (low I, /15

concentration)

2. Electrode surface change, such as
precipitation, adsorption, or
passivation
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13 1 Mass Transport Limit!? Check Concentration Relaxation

1

C/Cy

x/6

A

x/6

If reaction is at mass transport limit...

2 .
T = 5_ ~10 s Transient effects should ‘reset’
D With concentration relaxation
0 ~0.01lcm

D~10"°>cm?s71




14 | Can diffusion refresh the electrode? Current interrupt

Increasing ‘relaxation’ time beyond t

, 60 s
Discharge -5 mA cmr 3.2
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Relaxation time suggests a species is slowly removed from the electrode surface.

A.M. Maraschky et al. Tailoring Electrode Materials for lodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation. Mo disk, 60% Nal, 50% SoC




15 1 What prevents stable discharge?! Especially in basic catholyte

Cathode
l; + 2e-— 3I-

Possible reasons:

ons (low I,/15

- Relaxation: ~600 s
- Stability depends on electrode material

2. Adsorption or local phase instability on

electrode surface

- Nal film covers surface?
- 1 S?
Too thick (>>100s of uC/cm?)
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16 | Phase Stability Depends on Composition
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Discharge may precipitate locally high iodide concentrations on electrode.
Basic catholyte cycles in phase diagram where Nal solids are stable.




17 ‘ Conclusions

Phase stabilities limit the current and charge that an electrode can sustain in Nal/AlCl,

(e]

o

Different materials show large differences in phase stability on electrode surfaces

o

Basic catholyte shows greater local phase-instability, possibly precipitating Nal on the

electrode surface during discharge
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A.M. Maraschky et al. Tailoring Electrode Materials for lodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.

A.M. Maraschky et al. Impact of Catholyte Lewis Acidity at the Molten Salt-NaSICON Interface in Low-Temperature Molten Sodium Batteries. J. Phys. Chem. C. (2022) In Revision.
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20 | Electrode Polarization on Charge

Ns =V —Eq —iRq

Final V used:
After 900 s
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GC had the lowest overpotential on charge at +10 mA cm2.
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Surface resistance on NaSICON interface increased only in acidic catholyte.
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NaSICON Stability Probed with EIS in 3-Electrode
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A.M. Maraschky et al. Impact of Catholyte Lewis Acidity at the Molten Salt-NaSICON Interface in Low-Temperature Molten Sodium Batteries. J. Phys. Chem. C. (2022) In Revision.
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2 | Current Collector Optimization

Current
Collector

Catholyte y ; Na Anode
Nal/AlCl, |
NaSICON
2. What high-surface area configuration? (microstructure, size) 1
> Foam '
° Mesh Maximize surface area
. _ RTi RT H
Felt Vapp = o+ iRa + =+ ﬁ<1 — E)
\ )
|
Overpotentials

Electrochemically active surface area modulates overpotential (voltage inefficiency) for given current.




23 | Evaluation of High Surface Area Materials
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Combining GC Foam with Mo Mesh lowers charge overpotential!

A.M. Maraschky et al. Tailoring Electrode Materials for lodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.




24 ‘ Cyclic Voltammetry Reveals a New Peak

Basic, 7.5% SoC Acidic, 7.5% SoC
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25 ‘ Tin Coating Improves Molten Sodium Anode

High interfacial resistance between
molten Na and solid electrolytes typically
prevents low-temperature operation

Na -
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Sn coating on NaSICON decreases resistance at the sodium-separator interface.

M. M. Gross, L. J. Small, A. S. Peretti, S. J. Percival, M. A. Rodriguez and E. D. Spoerke. J. Mat. Chem. A, 8, 17012 (2020).
M. M. Gross, S. |. Percival, L. J. Small, ). Lamb, A. S. Peretti and E. D. Spoerke. App. Energy Mat., 3, 11456 (2020).
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26 ‘ Potentiostatic Experiments on Disk Electrodes

V =+ 400 mV vs OCP V =-500 mV vs OCP
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Glassy carbon showed very stable charge (+) current, while Mo had greatest (-) current on discharge.
May be due to differences in iodine/triiodide adsorption.

° 0 0 0 :
A.M. Maraschky et al. Tailoring Electrode Materials for lodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation. 1 10 C’ 45%’ Nal / 55/) AlCl3’ 7’ SA SOC bU]ld




27 | Probing Different Interfaces after Salt Exposure
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NaSICON interface is the site of the impedance increase in acidic catholyte

140 h exposure




28 ‘ SEM Confirms Material Stability

After cycling and cleaning, no evidence of microstructural changes.

A.M. Maraschky et al. Tailoring Electrode Materials for lodide/Triiodide Redox in Low-Temperature Molten Sodium Batteries. (2022) In Preparation.
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