This paper describes objective technical results and analysis. Any subijective views or opinions that mightlbelexpressed}in|
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States'Government.

SAND2022-13812C

—_— : Sandia
s % ol i National

— = Laboratories

o) CEEEE "'-E;".‘TF.-L-.“E"“"-'- e
o e 1 LI _f“"-_.-l- e - i S "

- ‘--. T!'P-—'“ =
] Y -

e B L e

-

Hyper-differential sensitivity
analysis with respect to
model discrepancy

Joseph Hart and Bart van Bloemen Waanders

Sandia National Laboratories

©ENERGY NISH
Wamrm Acvmee Brisfy Ambremabue
Sandia National Laboratories is a
multimission laboratory managed
and operated by National Technology
& Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of
Honeywell International Inc., for the
U.S. Department of Energy’s National
Nuclear Security Administration under
contract DE-NA0003525.

SAND2022-XXXX

Scientific Machine Learning for Complex Systems: Beyond Forward
Simulation to Inference and Optimization

October 10, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering [SolutionsfofiSandia,|LLC, alwhollylowned!
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administrationfundercontract DE-NA0003525.



Decision-making for complex systems

Goals

+ Calibrate models

+ Determine optimal designs/controllers
* Quantify uncertainty

Challenges:

« Computation cost

* Incomplete models and data

« Large decision and uncertainty spaces

Strategy:

* Fuse data, models, decisions with:
« Robust performance to address uncertainties
* Interpretability to support decision-making
» Scalable methods to overcome high dimensionality 3
 Efficient algorithms to mitigate cost




Scientific ML - Data, physics, and decisions

0.6 —True Physios
Data summarizes what has happened (past) 04l _8?;:62;(1 Data
Data is noisy and sparse

02
Physics describes what will happen (future)
Models are approximate, uncertain, and incomplete Of
Predictions are plagued by uncertainties 027
Computational support for decisions is limited 04!

0O 02 04 06 08 1 |
ou

o Fv-Vu=F

« Accurate prediction requires fusing information sources |

\Vs :??‘? * SciML should synthesize physics, data, and decisions I



PDE/ODE-constrained optimization foundation

min J(u, 2)

2

s.t. c(u,z) =0

where
J = objective function

¢ := state equations PDEs or ODEs

u 1= state variables

&

Challenges:

Infinite dimensional state and possibly
decision variables

Matrix-free linear algebra

Iterative solvers needed
Preconditioning essential

Parallelism necessary

Large sensitivity requirements

2 := decision variables (design, control, inversion)



PDE-constrained optimization solution

min J(u, z)

", 2

s.t. clu,z) =0

Solution strategy:

Define Lagrangian function: L(u,z, A\) = J(u, z) + (X, c(u, 2)) * Reduced space

Adjoints

Newton-Krylov solvers

MPI based communication
Trust-region globalization

where A is the Lagrange multiplier

Computation of the reduced gradient:

clu,z) =0 statc cquation
e, (u, 2)A = —J (u, z) adjoint equation
J, (z) = cL(u, z2)A+ J,(u, z) gradient equation I

Newton step:
V2 J(zp)02 = =VJ(z)

Zpt1 =2k + 02 I
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Optimization of Approximate Models

min J(S(z),z)

e .J is the objective
e 2 is a design, control, or inversion parameter

¢ S (z) is an approximate model

Our goals arc:
e Use the limited high-fidelity evaluations to improve the solution

e Characterize uncertainty in the optimal solution due to S — 5




Approximate Optimal Solution

Z =argmin J(S(z), 2)
Z

High-fidelity Data

S(z) - 5(z)

Learning Optimal Solution Updates ml
|



Discrepancy
Parameterization

Learning Optimal Solution Updates ml

6(z,0) = S(z) — f(z)

1

Approximate Optimal Solution Post-Optimality Sensitivity Optimal Solution Posterior
~ _ - 9% , 0Z
z(8) = argmin J(S(z) + 6(z,0),z > ﬁﬂﬁ' — —H-1BAG > O ~ Mpost = 2 g%@

VA
High-fidelity Data Bayesian Inversion
5(z) - S(z) > Tt X Tl hal T pior

| |

Prior Discrepancy

T — Laws, length scales, etc. I

pior
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ILllustrative Example

1ot ) 3 !
mm—/ (S(z) — T(x)) d:z:—l——/ 2Ex
= 2y 2 Jo

where S(z) is the solution operator for

— k' =2 on (0,1)
s = hu on {0,1}

The high-fidelity model S solves

—rku +vu =2 on (0, 1)

k' = hu on {0,1}

Given the high-fidelity solution 5(z) for 2 different source terms, im-
prove and characterize uncertainty in the low-fidelity optimal source.




Optimal Solution Posterior

Posterior optimal solution samples

-~ _— Optimal solution with
2 TN _ / approximate model
1.8
G
Update P
1 4 - solution |
1.2 High fidelity solution
' |
0 02 04 06 08 1 |



Discrepancy
Parameterization

Learning Optimal Solution Updates ml

6(z,0) = S(z) — §(z)

1

Approximate Optimal Solution Post-Optimality Sensitivity Optimal Solution Posterior
~ _ - 9% , 0Z
z(8) = argmin J(S(z) + 6(z,0),z > ﬁﬂﬁ' — —H-1BAG > O ~ Mpost = 2 g%@

VA
High-fidelity Data Bayesian Inversion
5(z) - S(z) > Tt X Tl hal T pior

| |

Prior Discrepancy

T — Laws, length scales, etc. I

pior




.» | Model Discrepancy Representation

e Since post-optimality analysis only depends on the mixed (z, #) derivative,
assume a bi-lincar form

3z, 0)=(1,, I, ® ZTMz) o

e Discretized o : R® x R? — R™ is parameterized by § € R?
e p=m(n+ 1) so the dimension of § may be O(mesh size?) |
e Evaluate §(z,6) efliciently using Kronecker product

o (M.)i; = (vi,1;), - mass matrix that defines the inner product on Z, I
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Discrepancy
Parameterization

6(z,0) = S(z) — f(z)

1

Approximate Optimal Solution

z(8) = argmin J(S(2) + 6(z,0),z
Z

Learning Optimal Solution Updates

Post-Optimality Sensitivity

High-fidelity Data

S5(z) = $(z)

ag

Bayesian Inversion

> Tut X Tigdi hal Tpior

T

Prior Discrepancy

T — Laws, length scales, etc.

pior

o

Optimal Solution Posterior

a5
> — A8 = —H-1BAB >

*N
@"-Hpo”:‘*z =

0z
a6




Post-optimality Sensitivities

14

min J(S(z) + 6(z,6), z) (1)

e z* solves (1) when 4(z,0y) = 0, the problem solved in practice |

e Under mild assumptions, applying the Implicit Function Theorem to

VJ(z",6p) =0 |

gives
FN(QU)—}N(i*) I
such that F(6y) solves (1) when 6 = 6y and I

Fy(6o) = ~H'B

is the sensitivity of the optimal solution with respect to model discrepancy I
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Fy6y) = —-H 'B

e H is the Hessian of the objective function with respect to z

e B is the mixed second derivative of the objective with respect to z and 6

|
Post-optimality Sensitivities [[m
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Discrepancy
Parameterization

6(z,0) = S(z) — f(z)

1

Approximate Optimal Solution

z(8) = argmin J(S(2) + 6(z,0),z
Z

Post-Optimality Sensitivity

High-fidelity Data

0z AB = —H 'BAB
540 =

o

Optimal Solution Posterior

S(z) - 5(z)

Bayesian Inversion

*N
@"‘"Hpostﬁ‘z =

0z
a6

ﬂpx X Tlirdi  ha ﬂpiO‘

T

Prior Discrepancy

— Laws, length scales, etc.




Bayesian Inverse Problem - Prior Discrepancy
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e Measure size of d: ‘

E.[)|6(= 0)|13] = 67 Me6
where |

L Lozl M,

Mg = _
Lo M.z L®FE

e L encodes known physics of the discrepancy - in our case a Laplacian like ‘

operator and L~! represents the prior covariance
. : . ]
e I' is a covariance matrix on the control space Z I
e Hence Mg defines an inner product for @ to measure the size of the model |

discrepancy (z, 8) according to our prior knowledge imposed in L and T



|
s | Bayesian Inversion Problem [[m

e Arrange data and discrepancy representation so that we seek 6 such that

Af ~Db ‘

e Given Gaussian prior and noise models, linearity of §(z,0) in €, the pos-
terior is Gaussian with a negative log probability density function

— (A6 —b)” (A8 —Db)+ 6" Myb.
o (A0 =) (A0~ b)+ 67M,
e « balances the dependence of prior and data misfit
e The posterior mean is
— 1
§=-2A"b :
o |
and the posterior covariance is I
1 —1
> — (MQ + ATA> . |
6!
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e The goal is to sample from a GGaussian distribution which may be generated
by multiplying a factor of the covariance matrix with a standard normal
random vector and adding the mean

e DBut how do we invert the sum?

|
Bayesian Inversion Problem - Enabling Sampling [[J

—1
1
> = (M@ + ATA>
Y

1. Factorize A to rewrite My + - AT A

2. Invert My + ATA I
3. Factorize X2 I
4. Compute matrix-vector products for posterior samples I



50 ‘ Posterior Samples for Discrepancy

e Posterior samples take the form

where the mean 1s

1 & ol al S; U
n— ety - . Si Ui, ¢
0= 0" [( we @ MZIT "z — %) ) sz,e ( w;p © MIIT )]

£=1

uncertainty in the data informed directions is |

N

~ 1 S.ﬁ

9 — \/a - — ( -~ '&_1’?; —1 )
Z@:—l VA ; @ M2 I' "w;

and uncertainty in the data uninformed directions is

n—N-+1 L
I SrpUL
g = E . v
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Discrepancy
Parameterization

6(z,0) = S(z) — f(z)

1

Approximate Optimal Solution

z(8) = argmin J(S(2) + 6(z,0),z
Z

Learning Optimal Solution Updates

Post-Optimality Sensitivity

High-fidelity Data

S5(z) = $(z)

ag

Bayesian Inversion

> Tut X Tigdi hal Tpior

T

Prior Discrepancy

T — Laws, length scales, etc.

pior

o

Optimal Solution Posterior

a7
> —AQ = —H 1BA@ >

O~ Mpost = 2" =

0z
a6




, ‘ Propagating Samples Through Post-optimality Sensitivities m

"(00)(0 + 6+ 6) = —H *(B6 + Bf + BF)

g"l

1 N 1 N N
- HJ} :F_l — - bz uJ ) - i
+@Z(V, u,g) (Zg z QZZ pv 'u,p W

=1 i—=1 =1 =1 i=1
ni_ e N o eTg, N v Jb High-fidelity data
0=aSTV, ,J 2 Vv \/azg Ny I,
Approximate model
N Prior |
B6 = (vu.']ﬁk) I E*Zk I
k=1 Optimization



53 ‘ Propagating Samples Through Post-optimality Sensitivities m

F5(00)(0 + 0 +0) = —H™ (B0 + B + BY)

N N N N

R 1 1

BO= =87V, | S Cu D> bis(e” @ - u‘r— . — b (VG
- -V ; 2 e(et g, @ + " PZI(V @ (z¢ — %) - ;Z} iV g@ w

A - N o eTg, A v I P High-fidelity data
Bl = VaSTv, . J 2 7 +Va z; N T w, |

N n—N-+1 |
B6 = Z (vu.']ﬁk) I‘_E*Zk I



A ‘ Propagating Samples Through Post-optimality Sensitivities m

Fh(00)(0+ 0+ 0) = —H ' (B6 + B + B6)

N N
1 1
— ,qu F_l - - bz fuJ v - §
+@Z(V, u,g) (Zg z QZZ pv 'u,p W

=1 {=1 i=1

eTg'i ~ vu,']uz, —1
Bo = (u WJ (2 \/)T?:u?:) —I—ﬁg Ny ' w,
Approximate model
N n—N-+1 |
B6 = Z (vuJuk) I E*Zk I



- ‘ Propagating Samples Through Post-optimality Sensitivities

N A

F5(00)(0 + 0 +0) = —H™ (B0 + B + BY)

N N N N N
AN G D IS e § SR B D § 2
=1 i=1 =1 £{=1 i=1
N N
B = /aSTV,..J (Z +vay Ve @@ |
i—1 g i—1 [

Prior I

N n—N-+1
pi- > Q) |

k=1



o6 ‘ Propagating Samples Through Post-optimality Sensitivities
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Bi— Y k.)r‘zzk I

k=1 Optimization



5 | A Fluid Flow Example

Optimal design of a flow controller ‘

.1
min g [ v+ 5 [ el |
z 2 % 2 Q

Inflow

constrained by the Stokes equations

D
—uVv+Vp=g+z on {)
V.-v=0 on {2
as a simplification of the Navier-Stokes equations !
—uVv+(v-V)iv+Vp=g+=z on €2

V-v=90 on §? I



- | Comparison of Controllers

Using only Stokes Using Stokes + 1 Using NS - “Ground Truth”
NS forward solve

Nominal controller z, Updated controller z, High-fidelity optimal controller z,
- 16
0.8 15
0.6 .
13
0.4
12
0.2
11




,o | Comparison of States

Navier-Stokes solve
with nominal control

Navier-Stokes solve
with updated control

Nominal high-fidelity state v,(Z) Updated high-fidelity state v, (2 + Fy(0)9)

0.8 0.8 °

0.6 o6 0.5

0.4 0.4 4

0.2 0.2 -1.5
i % 0.5

J=1x10"2

Navier-Stokes solve
with optimal control

E}ptimal high-fidelity state v,(z*)

0.8

0.6

0.4

0.2

J =2x1073
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Posterior Controller Uncertainty

First mode coefficient

30,
25}
20}
15|
10}

5..

ol |

-1

= Nominal
— | Jpdated
= =High-fidelity

0

R

1

Second mode coefficient

30,
25|
20}
15

[T ) |
H]

10} ‘

= Nominal

-0.5

- Jpdated
= =High-fidelity

0

L

0.5

KL representation
Histogram of posterior
Goal is for updated to be

as close as possible to
high-fidelity




5, | Conclusions

e Dcveloped a framework to learn updates of low-fidelity optimal solutions
using limited high-fidelity data

e Approach is non-intrusive to the high-fidelity data and hence applicable ‘
to wide range of applications |

e Fxplore applications where high-fidelity data comes from experiments
e Future work to seek optimal data collection strategies

e Generalize to incorporate other modes and/or fidelities of the data

v Joseph Hart and Bart van Bloemen Waanders, “Hyper-Differential Sensitivity Analysis With Respect to
Model Discrepancy: Mathematics and Computation” (in preparation)
v Joseph Hart and Bart van Bloemen Waanders, "Hyper-differential sensitivity analysis with respect to

model discrepancy: Calibration and Optimal Solution Updating” (in preparation) :
*Robustness: UQ for optimal controller I

Scalable

*Interpretability: prior, optimization, data, and physics in the controller update
*Scalability: leveraging computational efficiency from PDECO methods
*Efficiency: Kronecker product and closed form solutions to controller updates
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Robust

Efficient



