

Sandia
National
Laboratories

Hyper-differential sensitivity analysis with respect to model discrepancy

Joseph Hart and Bart van Bloemen Waanders

Sandia National Laboratories

Scientific Machine Learning for Complex Systems: Beyond Forward Simulation to Inference and Optimization

October 10, 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Decision-making for complex systems

Goals

- Calibrate models
- Determine optimal designs/controllers
- Quantify uncertainty

Challenges:

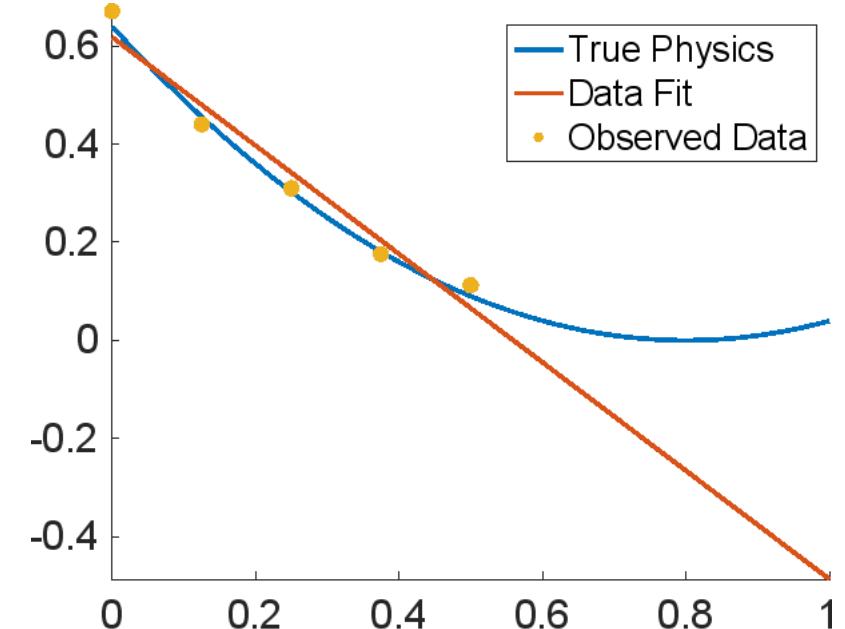
- Computation cost
- Incomplete models and data
- Large decision and uncertainty spaces

Strategy:

- Fuse data, models, decisions with:
 - **Robust** performance to address uncertainties
 - **Interpretability** to support decision-making
 - **Scalable** methods to overcome high dimensionality
 - **Efficient** algorithms to mitigate cost

Scientific ML – Data, physics, and decisions

- Data summarizes what has happened (past)
- Data is noisy and sparse
- Physics describes what will happen (future)
- Models are approximate, uncertain, and incomplete
- Predictions are plagued by uncertainties
- Computational support for decisions is limited



$$\frac{\partial u}{\partial t} + \mathbf{v} \cdot \nabla u = f$$

$$\mathbf{v} = ???$$

- Accurate prediction requires fusing information sources
- SciML should synthesize physics, data, and decisions

PDE/ODE-constrained optimization foundation

$$\min_{u,z} J(u, z)$$

$$\text{s.t. } c(u, z) = 0$$

where

J = objective function

c := state equations PDEs or ODEs

u := state variables

z := decision variables (design, control, inversion)

Challenges:

- Infinite dimensional state and possibly decision variables
- Matrix-free linear algebra
- Iterative solvers needed
- Preconditioning essential
- Parallelism necessary
- Large sensitivity requirements

PDE-constrained optimization solution

$$\min_{u,z} J(u, z)$$

$$\text{s.t. } c(u, z) = 0$$

Define Lagrangian function: $\mathcal{L}(u, z, \lambda) = J(u, z) + \langle \lambda, c(u, z) \rangle$

where λ is the Lagrange multiplier

Solution strategy:

- Reduced space
- Adjoint
- Newton-Krylov solvers
- MPI based communication
- Trust-region globalization

Computation of the reduced gradient:

$$c(u, z) = 0 \quad \text{state equation}$$

$$c_u^*(u, z)\lambda = -J_u(u, z) \quad \text{adjoint equation}$$

$$\hat{J}_z(z) = c_z^*(u, z)\lambda + J_z(u, z) \quad \text{gradient equation}$$

Newton step:

$$\nabla^2 \hat{J}(z_k) \delta z = -\nabla \hat{J}(z_k)$$

$$z_{k+1} := z_k + \delta z$$

$$\min_{z \in \mathcal{Z}} J(\tilde{S}(z), z)$$

- J is the objective
- z is a design, control, or inversion parameter
- $\tilde{S}(z)$ is an approximate model

Our goals are:

- Use the limited high-fidelity evaluations to improve the solution
- Characterize uncertainty in the optimal solution due to $S - \tilde{S}$

Learning Optimal Solution Updates

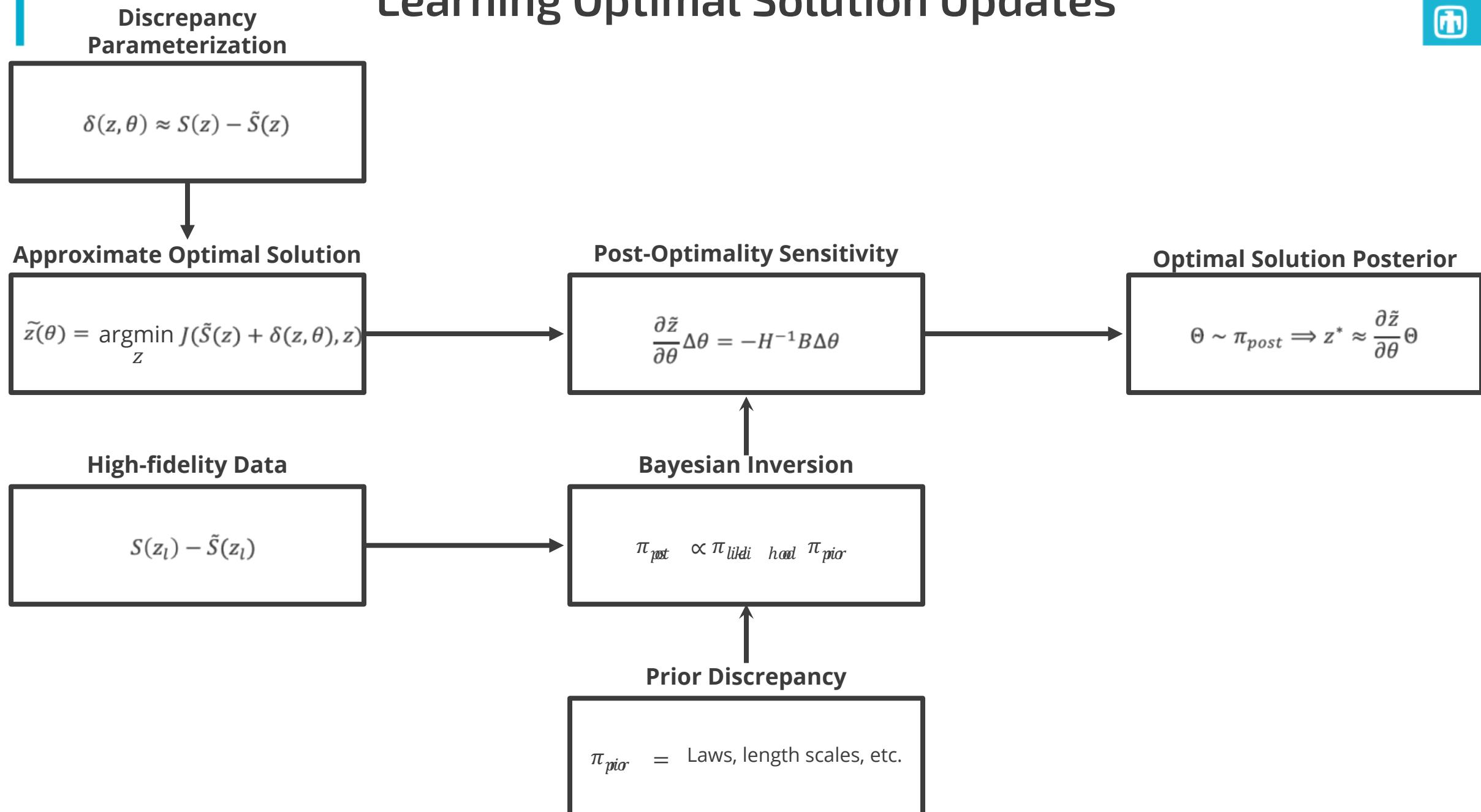
Approximate Optimal Solution

$$\tilde{z} = \operatorname{argmin}_z J(\tilde{S}(z), z)$$

High-fidelity Data

$$S(z_l) - \tilde{S}(z_l)$$

Learning Optimal Solution Updates



Illustrative Example

$$\min_z \frac{1}{2} \int_0^1 (\tilde{S}(z) - T(x))^2 dx + \frac{\beta}{2} \int_0^1 z \mathcal{E} z$$

where $\tilde{S}(z)$ is the solution operator for

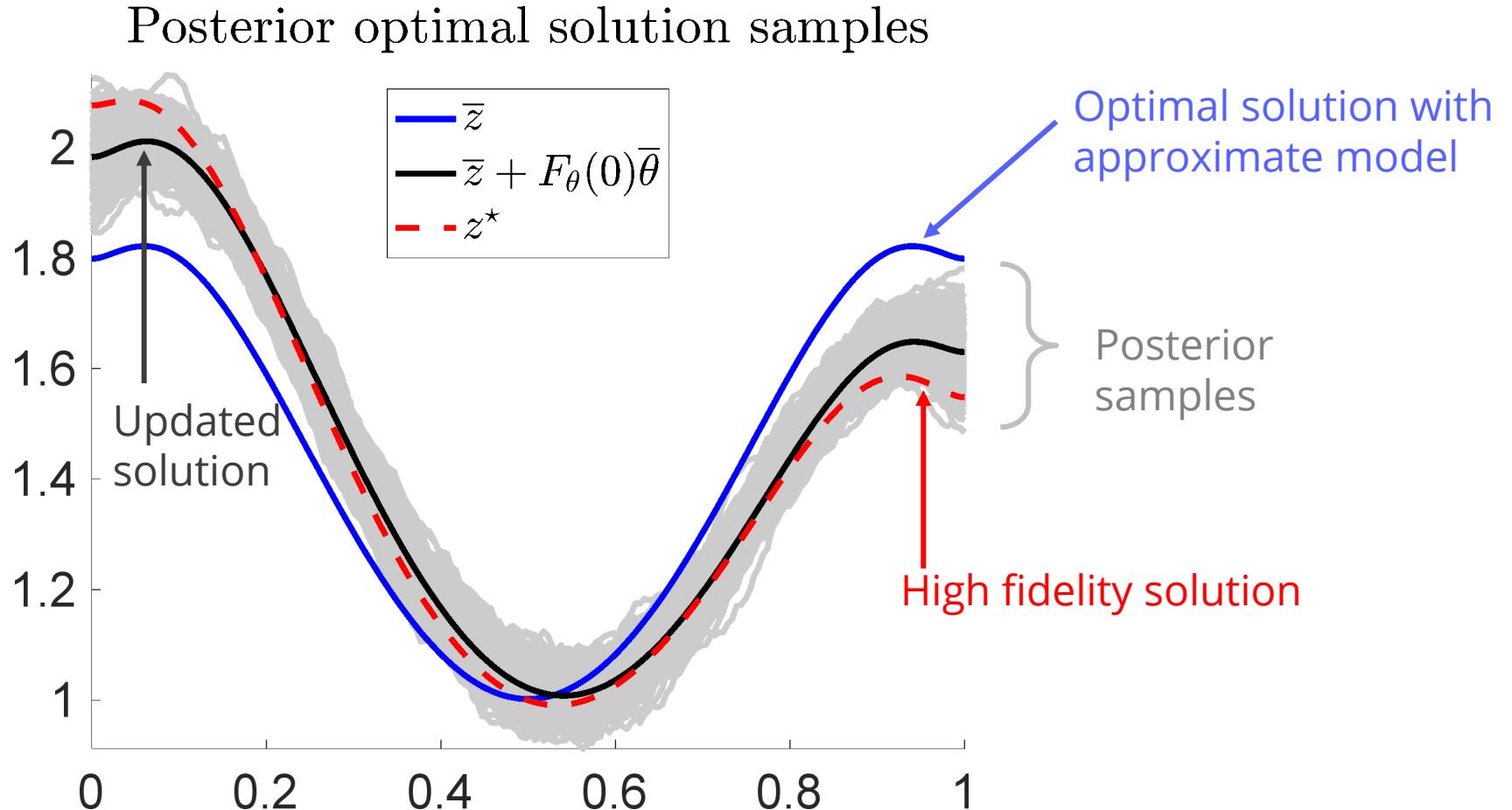
$$\begin{aligned} -\kappa u'' &= z && \text{on } (0, 1) \\ \kappa u' &= hu && \text{on } \{0, 1\} \end{aligned}$$

The high-fidelity model S solves

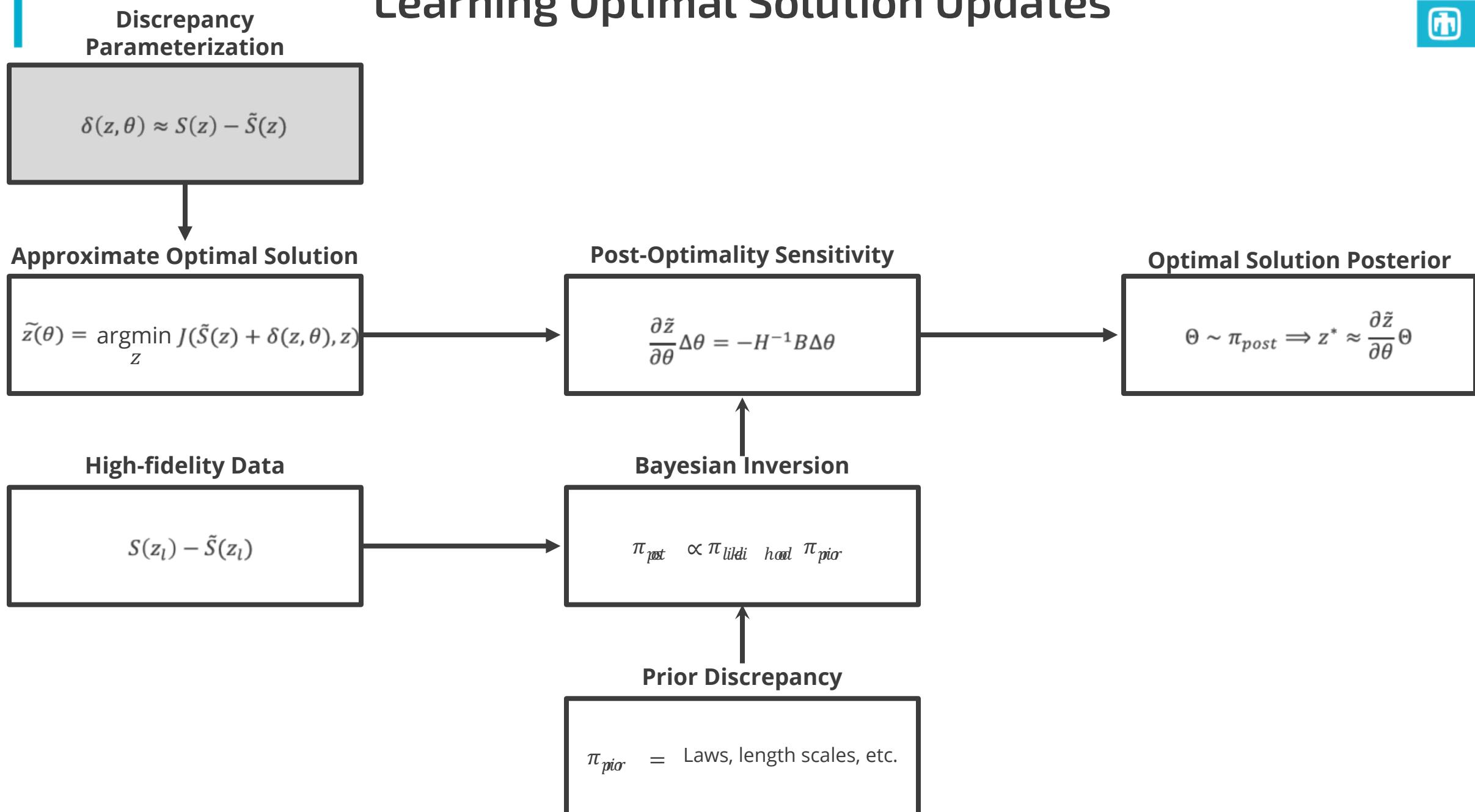
$$\begin{aligned} -\kappa u'' + vu' &= z && \text{on } (0, 1) \\ \kappa u' &= hu && \text{on } \{0, 1\} \end{aligned}$$

Given the high-fidelity solution $S(z)$ for 2 different source terms, improve and characterize uncertainty in the low-fidelity optimal source.

Optimal Solution Posterior



Learning Optimal Solution Updates



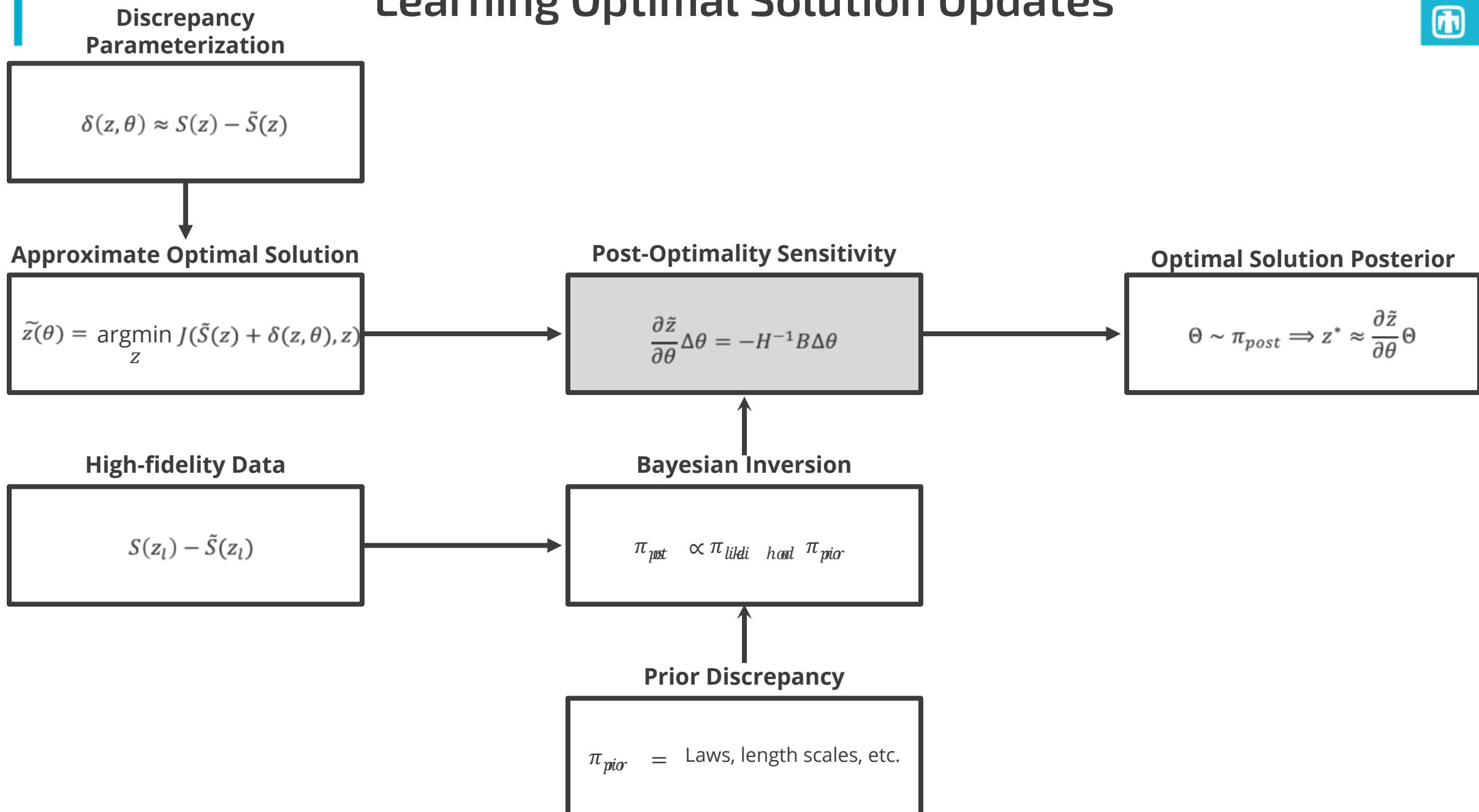
- Since post-optimality analysis only depends on the mixed (z, θ) derivative, assume a bi-linear form

$$\delta(\mathbf{z}, \theta) = (\mathbf{I}_m \quad \mathbf{I}_m \otimes \mathbf{z}^T \mathbf{M}_z) \theta$$

- Discretized $\delta : \mathbb{R}^n \times \mathbb{R}^p \rightarrow \mathbb{R}^m$ is parameterized by $\theta \in \mathbb{R}^p$
- $p = m(n + 1)$ so the dimension of θ may be $\mathcal{O}(\text{mesh size}^2)$
- Evaluate $\delta(z, \theta)$ efficiently using Kronecker product
- $(M_z)_{i,j} = (\psi_i, \psi_j)_Z$ - mass matrix that defines the inner product on \mathcal{Z}_h

Learning Optimal Solution Updates

13



Post-optimality Sensitivities

$$\min_{\mathbf{z}} \mathbf{J}(\tilde{\mathbf{S}}(\mathbf{z}) + \boldsymbol{\delta}(\mathbf{z}, \theta), \mathbf{z}) \quad (1)$$

- $\tilde{\mathbf{z}}^*$ solves (1) when $\boldsymbol{\delta}(\mathbf{z}, \theta_0) = \mathbf{0}$, the problem solved in practice
- Under mild assumptions, applying the Implicit Function Theorem to

$$\nabla J(\tilde{\mathbf{z}}^*, \theta_0) = \mathbf{0}$$

gives

$$\mathcal{F} : \mathcal{N}(\theta_0) \rightarrow \mathcal{N}(\tilde{\mathbf{z}}^*)$$

such that $\mathcal{F}(\theta_0)$ solves (1) when $\theta = \theta_0$ and

$$\mathcal{F}'_\theta(\theta_0) = -\mathbf{H}^{-1}\mathbf{B}$$

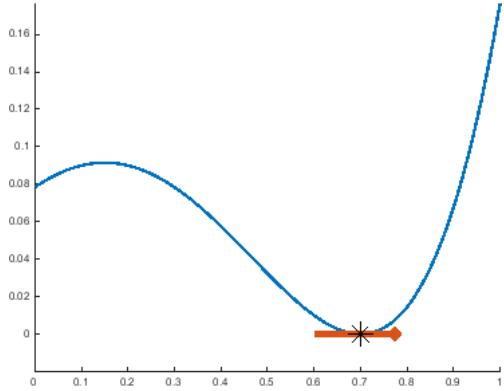
is the sensitivity of the optimal solution with respect to model discrepancy

Post-optimality Sensitivities

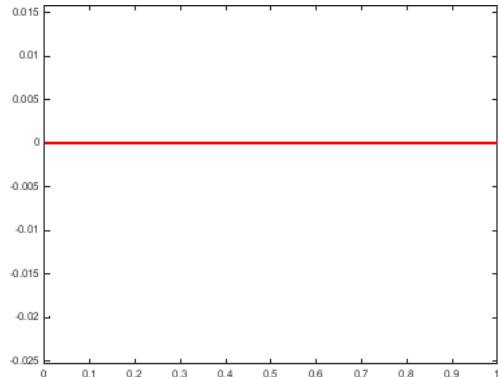
$$\mathcal{F}'_\theta(\theta_0) = -\mathbf{H}^{-1}\mathbf{B}$$

- \mathbf{H} is the Hessian of the objective function with respect to z
- \mathbf{B} is the mixed second derivative of the objective with respect to z and θ

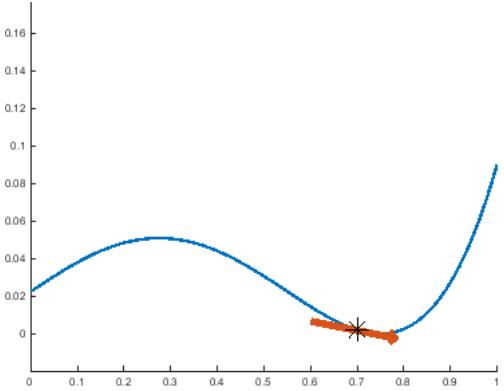
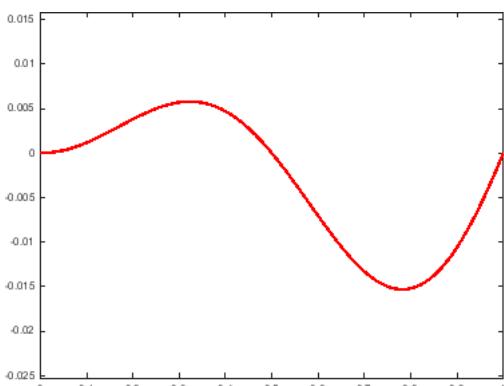
$\mathbf{J}(\tilde{\mathbf{S}}(z) + \delta(z, \theta), z)$



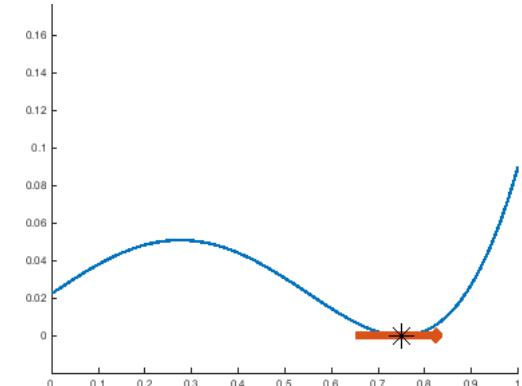
$\delta(z, \theta)$

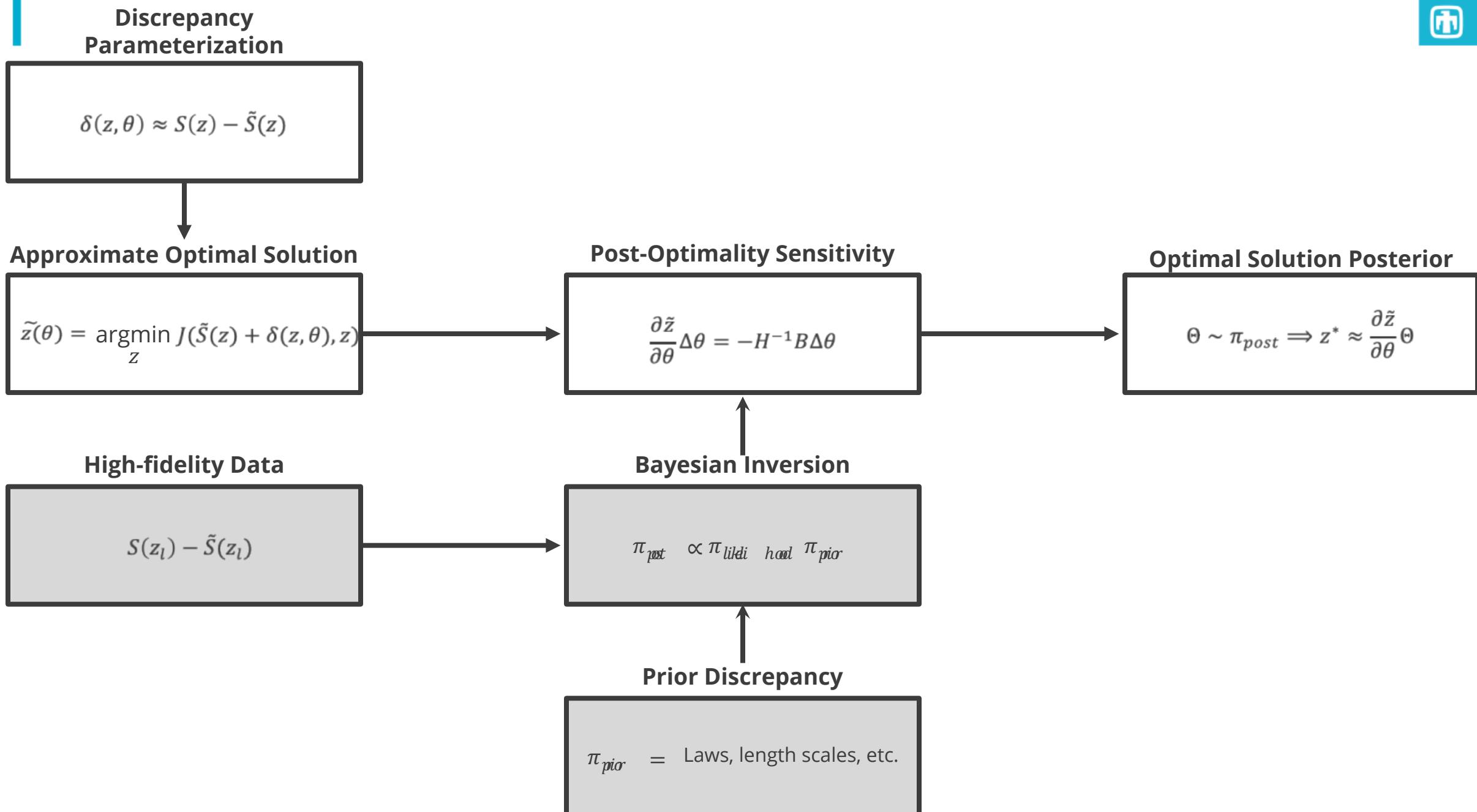


$\mathbf{B}\Delta\theta$



$-\mathbf{H}^{-1}$





Bayesian Inverse Problem - Prior Discrepancy

- Measure size of δ :

$$\mathbb{E}_z[||\delta(z, \theta)||_L^2] = \theta^T M_\theta \theta$$

where

$$M_\theta = \begin{pmatrix} L & L \otimes \bar{z}^T M_z \\ L \otimes M_z \bar{z} & L \otimes E \end{pmatrix}$$

- L encodes known physics of the discrepancy - in our case a Laplacian like operator and L^{-1} represents the prior covariance
- Γ is a covariance matrix on the control space \mathcal{Z}
- Hence M_θ defines an inner product for θ to measure the size of the model discrepancy $\delta(z, \theta)$ according to our prior knowledge imposed in L and Γ

Bayesian Inversion Problem

- Arrange data and discrepancy representation so that we seek θ such that

$$\mathbf{A}\theta \approx \mathbf{b}$$

- Given Gaussian prior and noise models, linearity of $\delta(\mathbf{z}, \theta)$ in θ , the posterior is Gaussian with a negative log probability density function

$$\frac{1}{2\alpha} (\mathbf{A}\theta - \mathbf{b})^T (\mathbf{A}\theta - \mathbf{b}) + \frac{1}{2} \theta^T \mathbf{M}_\theta \theta.$$

- α balances the dependence of prior and data misfit
- The posterior mean is

$$\bar{\theta} = \frac{1}{\alpha} \Sigma \mathbf{A}^T \mathbf{b}$$

and the posterior covariance is

$$\Sigma = \left(\mathbf{M}_\theta + \frac{1}{\alpha} \mathbf{A}^T \mathbf{A} \right)^{-1}.$$

Bayesian Inversion Problem – Enabling Sampling

- The goal is to sample from a Gaussian distribution which may be generated by multiplying a factor of the covariance matrix with a standard normal random vector and adding the mean
- But how do we invert the sum?

$$\Sigma = \left(\mathbf{M}_\theta + \frac{1}{\alpha} \mathbf{A}^T \mathbf{A} \right)^{-1}$$

1. Factorize \mathbf{A} to rewrite $\mathbf{M}_\theta + \frac{1}{\alpha} \mathbf{A}^T \mathbf{A}$
2. Invert $\mathbf{M}_\theta + \frac{1}{\alpha} \mathbf{A}^T \mathbf{A}$
3. Factorize Σ
4. Compute matrix-vector products for posterior samples

Posterior Samples for Discrepancy

- Posterior samples take the form

$$\bar{\theta} + \hat{\theta} + \tilde{\theta}$$

where the mean is

$$\bar{\theta} = \frac{1}{\alpha} \sum_{\ell=1}^N \left[\left(u_\ell \otimes \mathbf{M}_z^{-1} \boldsymbol{\Gamma}^{-1} (z_\ell - \bar{z}) \right) - \sum_{i=1}^N b_{i,\ell} \left(u_{i,\ell} \otimes \mathbf{M}_z^{-1} \boldsymbol{\Gamma}^{-1} \mathbf{w}_i \right) \right]$$

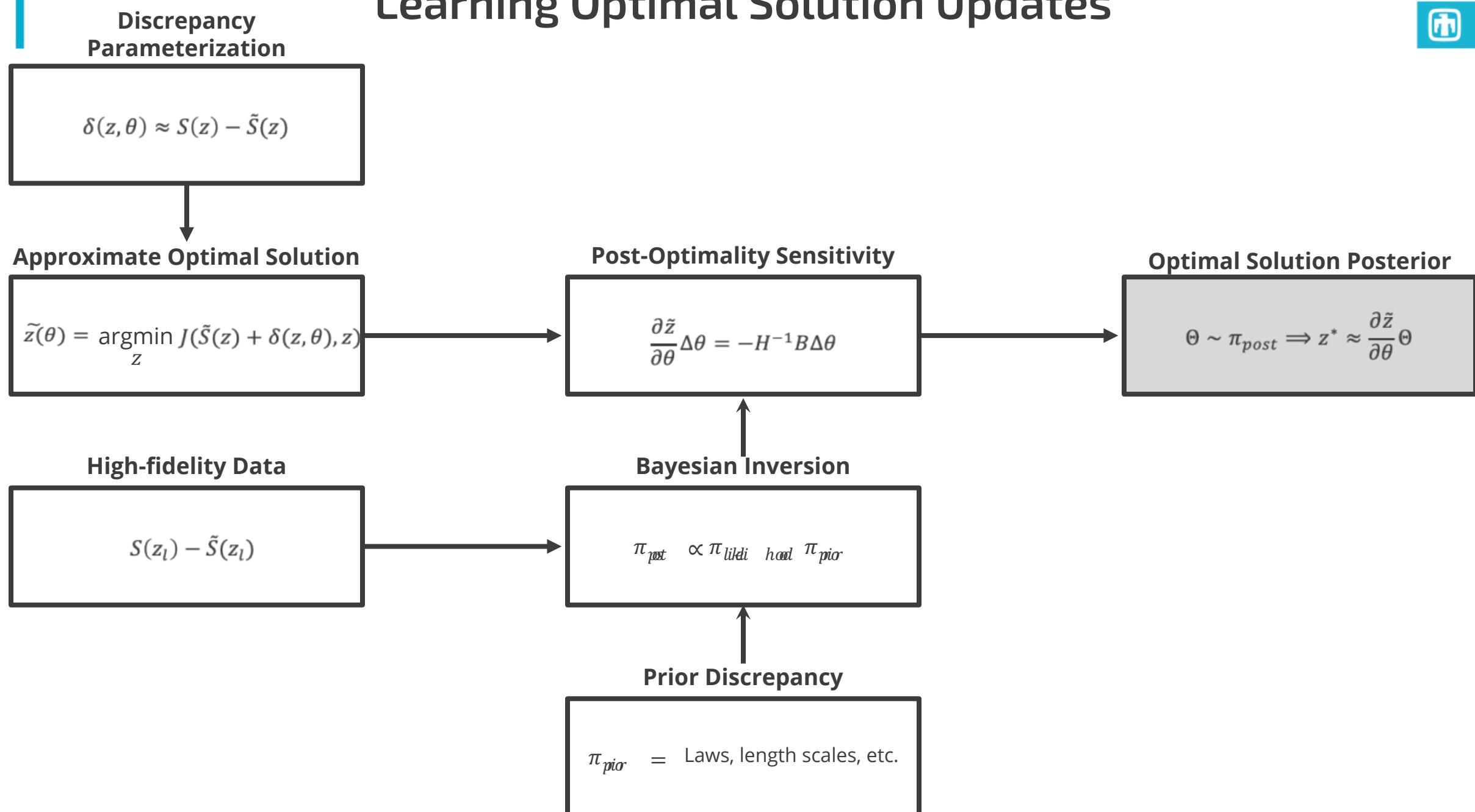
uncertainty in the data informed directions is

$$\hat{\theta} = \sqrt{\alpha} \sum_{i=1}^N \frac{1}{\sqrt{\lambda_i}} \left(\hat{u}_i \otimes \mathbf{M}_z^{-1} \boldsymbol{\Gamma}^{-1} \mathbf{w}_i \right)$$

and uncertainty in the data uninformed directions is

$$\tilde{\theta} = \sum_{k=1}^{n-N+1} \left(\tilde{u}_k \otimes \tilde{\mathbf{w}}_k \right)$$

Learning Optimal Solution Updates



$$\mathcal{F}'_{\theta}(\theta_0)(\bar{\theta} + \hat{\theta} + \tilde{\theta}) = -\mathbf{H}^{-1}(\mathbf{B}\bar{\theta} + \mathbf{B}\hat{\theta} + \mathbf{B}\tilde{\theta})$$

$$\mathbf{B}\bar{\theta} = \frac{1}{\alpha} \tilde{\mathbf{S}}_z^T \nabla_{u,u} \mathbf{J} \left[\sum_{\ell=1}^N \left(u_{\ell} - \sum_{i=1}^N b_{i,\ell}(e^T \mathbf{g}_i) \mathbf{u}_{i,\ell} \right) \right] + \frac{1}{\alpha} \sum_{\ell=1}^N (\nabla_u J u_{\ell}) \mathbf{\Gamma}^{-1} (z_{\ell} - \bar{z}) - \frac{1}{\alpha} \sum_{\ell=1}^N \sum_{i=1}^N b_{i,\ell} (\nabla_u \mathbf{J} \mathbf{u}_{i,\ell}) \mathbf{\Gamma}^{-1} \mathbf{w}_i$$

$$\mathbf{B}\hat{\theta} = \sqrt{\alpha} \tilde{\mathbf{S}}_z^T \nabla_{u,u} \mathbf{J} \left(\sum_{i=1}^N \frac{e^T \mathbf{g}_i}{\sqrt{\lambda_i}} \hat{u}_i \right) + \sqrt{\alpha} \sum_{i=1}^N \frac{\nabla_u \mathbf{J} \hat{u}_i}{\sqrt{\lambda_i}} \mathbf{\Gamma}^{-1} \mathbf{w}_i$$

High-fidelity data

Approximate model

$$\mathbf{B}\tilde{\theta} = \sum_{k=1}^{n-N+1} (\nabla_u \mathbf{J} \tilde{u}_k) \mathbf{\Gamma}^{-\frac{1}{2}} \tilde{z}_k.$$

Prior

Optimization

Propagating Samples Through Post-optimality Sensitivities

$$\mathcal{F}'_{\theta}(\theta_0)(\bar{\theta} + \hat{\theta} + \tilde{\theta}) = -\mathbf{H}^{-1}(\mathbf{B}\bar{\theta} + \mathbf{B}\hat{\theta} + \mathbf{B}\tilde{\theta})$$

$$\mathbf{B}\bar{\theta} = \frac{1}{\alpha} \tilde{\mathbf{S}}_z^T \nabla_{u,u} \mathbf{J} \left[\sum_{\ell=1}^N \left(u_{\ell} - \sum_{i=1}^N b_{i,\ell}(e^T \mathbf{g}_i) \mathbf{u}_{i,\ell} \right) \right] + \frac{1}{\alpha} \sum_{\ell=1}^N (\nabla_u \mathbf{J} u_{\ell}) \Gamma^{-1} (z_{\ell} - \bar{z}) - \frac{1}{\alpha} \sum_{\ell=1}^N \sum_{i=1}^N b_{i,\ell} (\nabla_u \mathbf{J} \mathbf{u}_{i,\ell}) \Gamma^{-1} \mathbf{w}_i$$

$$\mathbf{B}\hat{\theta} = \sqrt{\alpha} \tilde{\mathbf{S}}_z^T \nabla_{u,u} \mathbf{J} \left(\sum_{i=1}^N \frac{e^T \mathbf{g}_i}{\sqrt{\lambda_i}} \hat{u}_i \right) + \sqrt{\alpha} \sum_{i=1}^N \frac{\nabla_u \mathbf{J} \hat{u}_i}{\sqrt{\lambda_i}} \Gamma^{-1} \mathbf{w}_i$$

High-fidelity data

Approximate model

$$\mathbf{B}\tilde{\theta} = \sum_{k=1}^{n-N+1} (\nabla_u \mathbf{J} \tilde{u}_k) \Gamma^{-\frac{1}{2}} \tilde{z}_k.$$

Prior

Optimization

Propagating Samples Through Post-optimality Sensitivities

$$\mathcal{F}'_{\theta}(\theta_0)(\bar{\theta} + \hat{\theta} + \tilde{\theta}) = -\mathbf{H}^{-1}(\mathbf{B}\bar{\theta} + \mathbf{B}\hat{\theta} + \mathbf{B}\tilde{\theta})$$

$$\mathbf{B}\bar{\theta} = \frac{1}{\alpha} \tilde{\mathbf{S}}_z^T \nabla_{u,u} \mathbf{J} \left[\sum_{\ell=1}^N \left(u_{\ell} - \sum_{i=1}^N b_{i,\ell}(e^T \mathbf{g}_i) \mathbf{u}_{i,\ell} \right) \right] + \frac{1}{\alpha} \sum_{\ell=1}^N (\nabla_u J u_{\ell}) \mathbf{\Gamma}^{-1} (z_{\ell} - \bar{z}) - \frac{1}{\alpha} \sum_{\ell=1}^N \sum_{i=1}^N b_{i,\ell} (\nabla_u \mathbf{J} \mathbf{u}_{i,\ell}) \mathbf{\Gamma}^{-1} \mathbf{w}_i$$

$$\mathbf{B}\hat{\theta} = \sqrt{\alpha} \tilde{\mathbf{S}}_z^T \nabla_{u,u} \mathbf{J} \left(\sum_{i=1}^N \frac{e^T \mathbf{g}_i}{\sqrt{\lambda_i}} \hat{u}_i \right) + \sqrt{\alpha} \sum_{i=1}^N \frac{\nabla_u \mathbf{J} \hat{u}_i}{\sqrt{\lambda_i}} \mathbf{\Gamma}^{-1} \mathbf{w}_i$$

High-fidelity data

Approximate model

$$\mathbf{B}\tilde{\theta} = \sum_{k=1}^{n-N+1} (\nabla_u \mathbf{J} \tilde{u}_k) \mathbf{\Gamma}^{-\frac{1}{2}} \tilde{z}_k.$$

Prior

Optimization

$$\mathcal{F}'_{\theta}(\theta_0)(\bar{\theta} + \hat{\theta} + \tilde{\theta}) = -\mathbf{H}^{-1}(\mathbf{B}\bar{\theta} + \mathbf{B}\hat{\theta} + \mathbf{B}\tilde{\theta})$$

$$\mathbf{B}\bar{\theta} = \frac{1}{\alpha} \tilde{\mathbf{S}}_z^T \nabla_{u,u} \mathbf{J} \left[\sum_{\ell=1}^N \left(u_{\ell} - \sum_{i=1}^N b_{i,\ell} (e^T \mathbf{g}_i) \mathbf{u}_{i,\ell} \right) \right] + \frac{1}{\alpha} \sum_{\ell=1}^N (\nabla_u \mathbf{J} \hat{u}_{\ell}) \mathbf{\Gamma}^{-1} (z_{\ell} - \bar{z}) - \frac{1}{\alpha} \sum_{\ell=1}^N \sum_{i=1}^N b_{i,\ell} (\nabla_u \mathbf{J} \mathbf{u}_{i,\ell}) \mathbf{\Gamma}^{-1} \mathbf{w}_i$$

$$\mathbf{B}\hat{\theta} = \sqrt{\alpha} \tilde{\mathbf{S}}_z^T \nabla_{u,u} \mathbf{J} \left(\sum_{i=1}^N \frac{e^T \mathbf{g}_i}{\sqrt{\lambda_i}} \hat{u}_i \right) + \sqrt{\alpha} \sum_{i=1}^N \frac{\nabla_u \mathbf{J} \hat{u}_i}{\sqrt{\lambda_i}} \mathbf{\Gamma}^{-1} \mathbf{w}_i$$

High-fidelity data

Approximate model

$$\mathbf{B}\tilde{\theta} = \sum_{k=1}^{n-N+1} (\nabla_u \mathbf{J} \tilde{u}_k) \mathbf{\Gamma}^{-\frac{1}{2}} \tilde{\varepsilon}_k.$$

Prior

Optimization

Propagating Samples Through Post-optimality Sensitivities

$$\mathcal{F}'_{\theta}(\theta_0)(\bar{\theta} + \hat{\theta} + \tilde{\theta}) = -\mathbf{H}^{-1}(\mathbf{B}\bar{\theta} + \mathbf{B}\hat{\theta} + \mathbf{B}\tilde{\theta})$$

$$\mathbf{B}\bar{\theta} = \frac{1}{\alpha} \tilde{\mathbf{S}}_z^T \nabla_{u,u} \mathbf{J} \left[\sum_{\ell=1}^N \left(u_{\ell} - \sum_{i=1}^N b_{i,\ell} (e^T \mathbf{g}_i) \mathbf{u}_{i,\ell} \right) \right] + \frac{1}{\alpha} \sum_{\ell=1}^N (\nabla_u J)_{\ell} \Gamma^{-1} (z_{\ell} - \bar{z}) - \frac{1}{\alpha} \sum_{\ell=1}^N \sum_{i=1}^N b_{i,\ell} (\nabla_u \mathbf{J} \mathbf{u}_{i,\ell}) \Gamma^{-1} \mathbf{w}_i$$

$$\mathbf{B}\hat{\theta} = \sqrt{\alpha} \tilde{\mathbf{S}}_z^T \nabla_{u,u} \mathbf{J} \left(\sum_{i=1}^N \frac{e^T \mathbf{g}_i}{\sqrt{\lambda_i}} \hat{u}_i \right) + \sqrt{\alpha} \sum_{i=1}^N \frac{(\nabla_u \mathbf{J} \hat{u}_i)}{\sqrt{\lambda_i}} \Gamma^{-1} \mathbf{w}_i$$

High-fidelity data

Approximate model

$$\mathbf{B}\tilde{\theta} = \sum_{k=1}^{n-N+1} (\nabla_u \mathbf{J} \hat{u}_k) \Gamma^{-\frac{1}{2}} \tilde{z}_k.$$

Prior

Optimization

A Fluid Flow Example

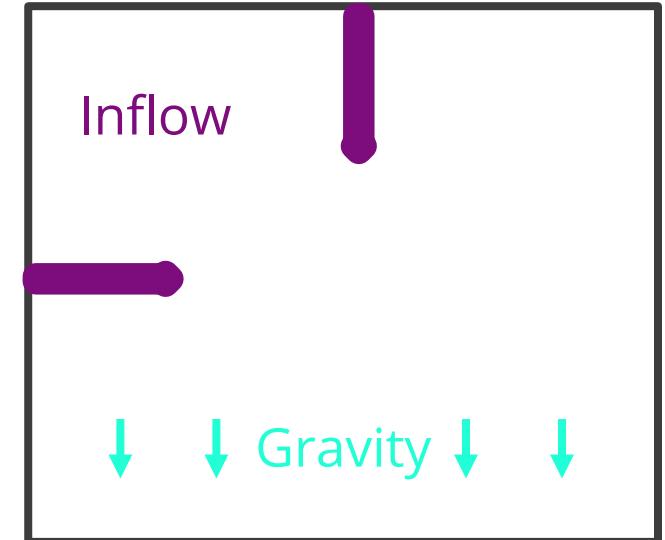
Optimal design of a flow controller

$$\min_z \frac{1}{2} \int_{\chi} \mathbf{v}_y(z)^2 + \frac{\beta}{2} \int_{\Omega} \|\mathbf{z}\|^2$$

constrained by the Stokes equations

$$-\mu \nabla \mathbf{v} + \nabla p = \mathbf{g} + \mathbf{z} \quad \text{on } \Omega$$

$$\nabla \cdot \mathbf{v} = 0 \quad \text{on } \Omega$$



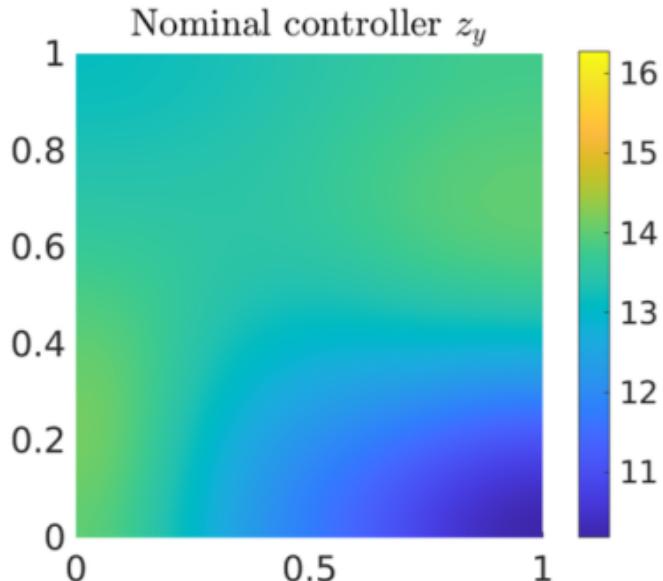
as a simplification of the Navier-Stokes equations

$$-\mu \nabla \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla p = \mathbf{g} + \mathbf{z} \quad \text{on } \Omega$$

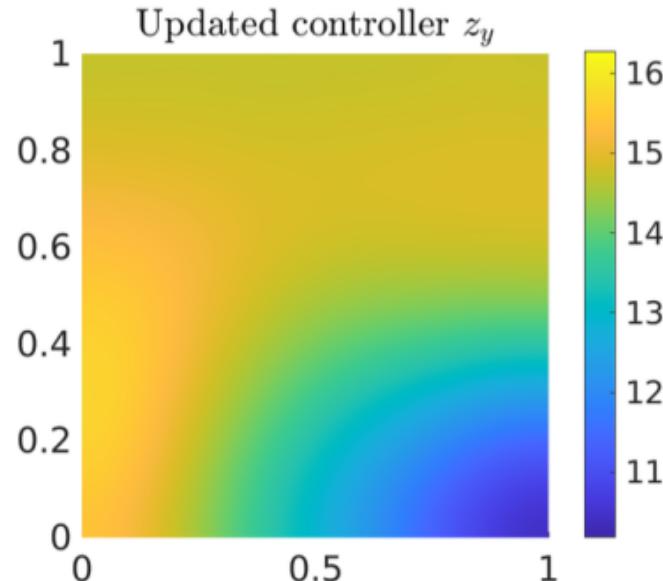
$$\nabla \cdot \mathbf{v} = 0 \quad \text{on } \Omega$$

Comparison of Controllers

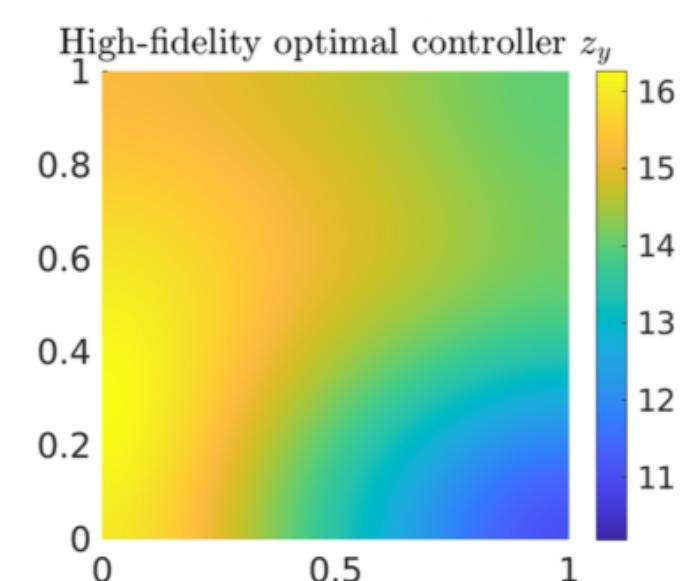
Using only Stokes



Using Stokes + 1
NS forward solve

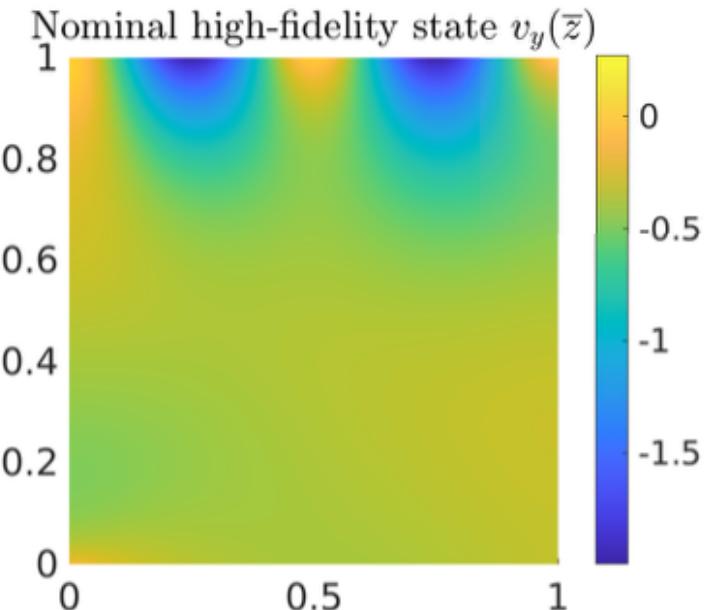


Using NS – “Ground Truth”



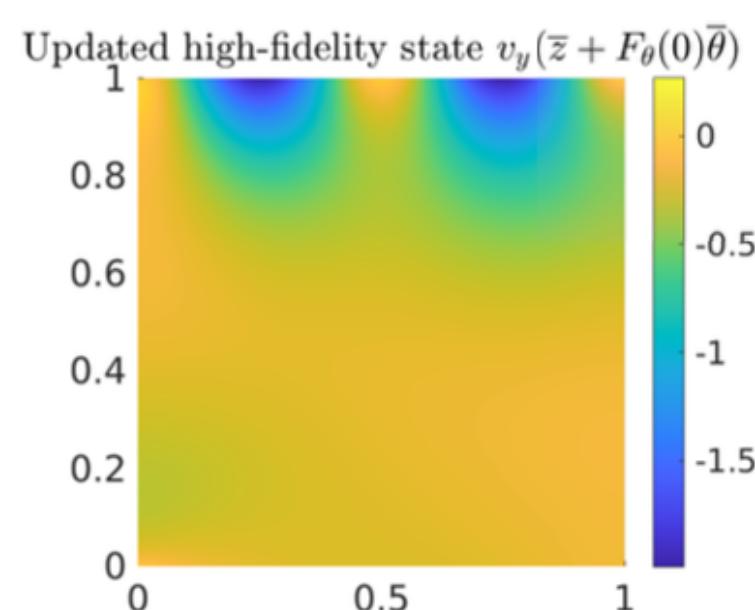
Comparison of States

Navier-Stokes solve
with nominal control



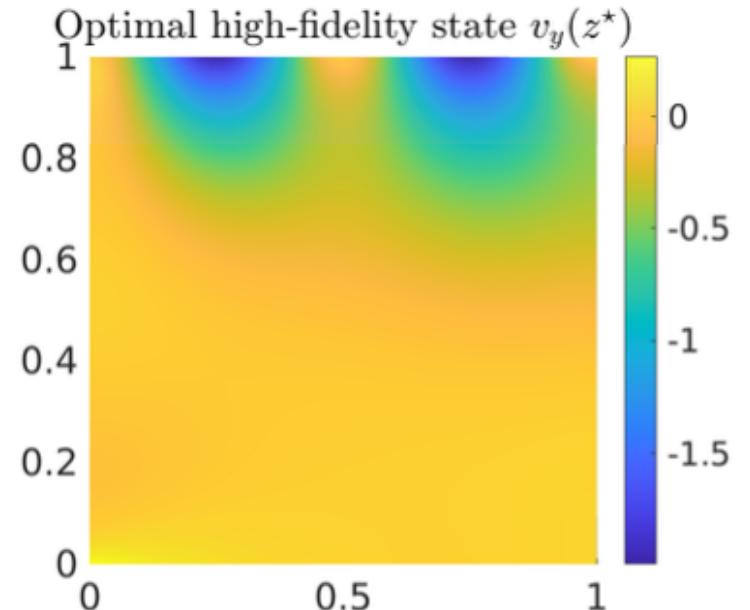
$$J = 3 \times 10^0$$

Navier-Stokes solve
with updated control



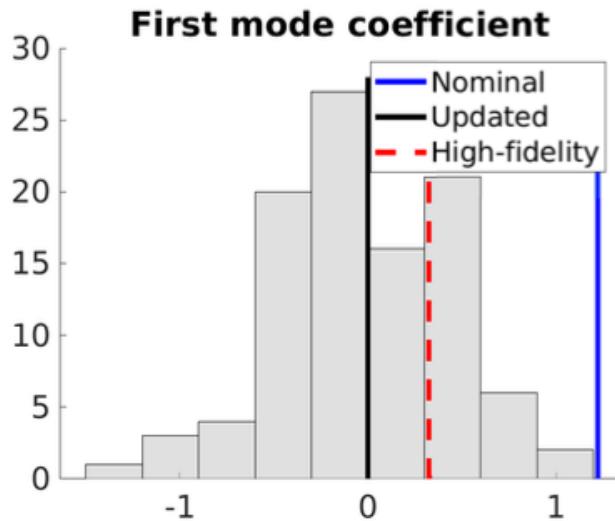
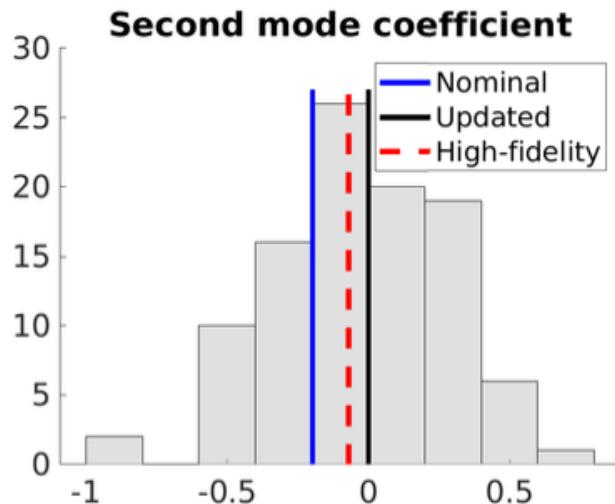
$$J = 1 \times 10^{-2}$$

Navier-Stokes solve
with optimal control



$$J = 2 \times 10^{-3}$$

Posterior Controller Uncertainty



- KL representation
- Histogram of posterior
- Goal is for updated to be as close as possible to high-fidelity

Conclusions

- Developed a framework to learn updates of low-fidelity optimal solutions using limited high-fidelity data
- Approach is non-intrusive to the high-fidelity data and hence applicable to wide range of applications
- Explore applications where high-fidelity data comes from experiments
- Future work to seek optimal data collection strategies
- Generalize to incorporate other modes and/or fidelities of the data

- ✓ Joseph Hart and Bart van Bloemen Waanders, "Hyper-Differential Sensitivity Analysis With Respect to Model Discrepancy: Mathematics and Computation" (in preparation)
- ✓ Joseph Hart and Bart van Bloemen Waanders, "Hyper-differential sensitivity analysis with respect to model discrepancy: Calibration and Optimal Solution Updating" (in preparation)

- Robustness: UQ for optimal controller
- Interpretability: prior, optimization, data, and physics in the controller update
- Scalability: leveraging computational efficiency from PDECO methods
- Efficiency: Kronecker product and closed form solutions to controller updates