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Decision-making for complex systems

Goals
• Calibrate models 
• Determine optimal designs/controllers
• Quantify uncertainty

Challenges:
• Computation cost
• Incomplete models and data
• Large decision and uncertainty spaces

Strategy:
• Fuse data, models, decisions with:

• Robust performance to address uncertainties
• Interpretability to support decision-making
• Scalable methods to overcome high dimensionality
• Efficient algorithms to mitigate cost



Scientific ML – Data, physics, and decisions

• Data summarizes what has happened (past)
• Data is noisy and sparse

• Physics describes what will happen (future)
• Models are approximate, uncertain, and incomplete

• Predictions are plagued by uncertainties
• Computational support for decisions is limited

• Accurate prediction requires fusing information sources

• SciML should synthesize physics, data, and decisions



PDE/ODE-constrained optimization foundation

Challenges:
• Infinite dimensional state and possibly 

decision variables
• Matrix-free linear algebra
• Iterative solvers needed
• Preconditioning essential
• Parallelism necessary
• Large sensitivity requirements



PDE-constrained optimization solution

Solution strategy:
• Reduced space
• Adjoints
• Newton-Krylov solvers
• MPI based communication
• Trust-region globalization



6 Optimization of Approximate Models



Approximate Optimal Solution

High-fidelity Data

argmin
ᵆ�
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Parameterization
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Illustrative Example9
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Model Discrepancy Representation12
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Post-optimality Sensitivities14

(1)



Post-optimality Sensitivities15
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Bayesian Inverse Problem - Prior Discrepancy17



Bayesian Inversion Problem18



Bayesian Inversion Problem – Enabling Sampling19



Posterior Samples for Discrepancy20
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Propagating Samples Through Post-optimality Sensitivities22
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Propagating Samples Through Post-optimality Sensitivities26
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A Fluid Flow Example27

Inflow

Gravity



Comparison of Controllers28

Using only Stokes Using Stokes + 1 
NS forward solve

Using NS – “Ground Truth”



Comparison of States29

Navier-Stokes solve 
with nominal control 

Navier-Stokes solve 
with updated control 

Navier-Stokes solve 
with optimal control



Posterior Controller Uncertainty30

• KL representation

• Histogram of posterior

• Goal is for updated to be 
as close as possible to 
high-fidelity



31 Conclusions

 Joseph Hart and Bart van Bloemen Waanders, “Hyper-Differential Sensitivity Analysis With Respect to 
Model Discrepancy: Mathematics and Computation” (in preparation)

 Joseph Hart and Bart van Bloemen Waanders, ”Hyper-differential sensitivity analysis with respect to 
model discrepancy: Calibration and Optimal Solution Updating” (in preparation)

•Robustness:  UQ for optimal controller
•Interpretability:  prior, optimization, data, and physics in the controller update
•Scalability: leveraging computational efficiency from PDECO methods
•Efficiency: Kronecker product and closed form solutions to controller updates


