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Motivation for studying yielding fluids

Yield stress can be seen in wax, whipped cream, 
toothpaste, lava, ceramic pastes, and Carbopol
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Objective: develop computational models for 
free-surface flows of yield stress fluids

Target system: solidifying 
continuous phase with particles 
and droplets (e.g. polyurethane 
foams)

Why is this needed?
• Accurate predictions of surface profiles and spreading 

dynamics for flowing systems

Recent state-of-the-art in production codes: 
• Ramp up viscosity arbitrarily high to “solidify” a fluid
• Does not accurately preserve the stress state that 

develops in the material
• One way coupling between fluid and solid codes

Our approach: 
• Develop and implement constitutive models that can 

represent both solid and fluid behavior

2.5 mm shot, 40% injection speed

2.5 mm shot, 100% injection speed

Green ceramic 
processing 
shows yield 
stress and 
both fluid and 
solid-like 
behavior
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Models for Visco/elastic/plastic materials

1. P. Saramito. A new constitutive equation for elastoviscoplastic fluid flows. J. Non-
Newton. Fluid Mech., 145 (1) (2007), pp. 1-14

2. Y.S. Park, P.L.F. Liu. Oscilitory pipe  flows of a yield stress fluid. .  J. Fluid Mech. 658 
(2010) 673-689

3. Kamani, Krutarth, Gavin J. Donley, and Simon A. Rogers. Unification of the 
Rheological Physics of Yield Stress Fluids. Phys. Rev. Lett. 126:21 (2021): 218002
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 Particle sedimentation, oscillating, and elongational flow [1]

 2-phase, buoyancy-driven flows [2]

 Dam-breaking for a range of fluid properties (yield stress, elastic modulus, etc.) [3]

 Collision of droplets with a vertical obstruction [4]

 Droplet spreading on a pre-wetted surface [5]

Some recent numerical EVP fluid studies

1. D. Fraggedakis, Y. Dimakopoulos, J. Tsamopoulos. Yielding the yield stress analysis: A thorough comparison of recently proposed 
elasto-visco-plastic (EVP) fluid models. J. Non-Newton. Fluid Mech., 236 (2016), p. 104-122

2. P. Moschopoulos, A. Spyridakis, S. Varchanis, Y. Dimakopoulos, J. Tsamopoulos. The concept of elasto-visco-plasticity and its 
application to a bubble rising in yield stress fluids.  J. Non-Newton. Fluid Mech., 297 (2021), 104670

3. C.M. Oishi, R.L. Thompson,  F.P. Martins. Transient motions of elasto-viscoplastic thixotropic materials subjected to an imposed stress 
field and to stress-based free-surface boundary conditions. Internat. J. Engrg. Sci., 109 (2016), pp. 165-201

4. C.M. Oishi, F.P. Martins R.L. Thompson. Gravitational Effects in the Collision of Elasto-Viscoplastic Drops on a Vertical Plane.  
Fluids (2020) 5(2), 61

5. Jalaal M., Stoeber B., Balmforth N.J. Spreading of viscoplastic droplets J. Fluid Mech., 914 (2021), p. A21
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Equations of motion and stress constitutive equations

Guénette, R. and Fortin, M. Journal of Non-Newtonian Fluid Mechanics 
(1995) 60: 1, 27-52. 
Saramito, P. Journal of Non-Newtonian Fluid Mechanics (2007) 145: 1, 1-14.
Fraggedakis, D et al. Journal of Non-Newtonian Fluid Mechanics (2007) 
236,  104-122.

Herschel-Buckley (HB)-Saramito yield 
model

Momentum and Continuity

Oldroyd-B stress constitutive model + Saramito yield model
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We also consider a generalized-Newtonian constitutive 
model

Bingham-Carreau-Yasuda model

Momentum and Continuity
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Mold filling geometry: flow between two thin plates

 Experimental study 
considers

• inlet flow rate: 5-20 mL/min
• 0-1 wt% Carbopol solutions

Propylene glycol

0.08% Carbopol

0.2% Carbopol

0.3% Carbopol

0.5% Carbopol

1% Carbopol

�

�
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Trends for drop shape evolution
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 Fluid drop changes from triangular to round with
 increasing injection flow rate, Carbopol 

concentration
 decreasing drop cross-sectional area
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Characterization of Carbopol and parameter fitting

[Carbopol] � �[Pa ⋅ s� [ � �[Pa] � � ] Pa] n

0.08 wt% 4.04 25.2 3.01 0.446

0.30 wt% 58.92 479.7 17.89 0.368

HB-Saramito 

Bingham-Carreau-Yasuda (BCY)

 The elastic modulus, G is determined via 
small amplitude stress vs. strain data

 Other rheological parameters were 
determined using a nonlinear least squares 
fit

[Carbopol] a n

0.08 wt% 6.73 0.018 1.53 1.12 1.0 0.22

0.30 wt% 241.71 0.001 31.21 3.11 1.0 0.19

0.08 wt% Carbopol 0.30 wt% Carbopol
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Mold filling simulations

No 
penetration, 
Navier slip 
BCs

Kinetic, 
capillary BCsSymmetry 

BCs

Tabulated 
inflow 
velocity

No mesh 
motion

gravity

x

y

z

x
z

y

Contact 
angles 
fixed at 
90°

Constitutive models
 Bingham-Carreau-Yasuda 

(generalized Newtonian) 
 HB-Saramito

Computations
 Finite element method in Goma
 Arbitrary Eulerian-Lagrangian 

moving mesh framework 
 Remeshing done every ~30 

timesteps

Validation Experiments
 0.08, 0.30 wt.% Carbopol
 5-20 mL/min inlet flow rate
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HB-Saramito drop height/width

 HB-Saramito model is predictive of both height and 
width, esp. at the lowest inlet flow rate
◦ width tends to be over-estimated with growing flow rate 

and cross-sectional area

0.30%

0.08%
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Computed drop height/width

 Overall, BCY model is less predictive of droplet dimensions, but  accuracy 
improves for the largest flow rate considered

0.30%
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Computed drop height/width

0.3%

J. McConnell, W. Ortiz, J.C. Sutherland, P. Newell, A.M. Grillet, A.M. McMaster, R.B. Bhakta, R.R. 
Rao Computational modeling and experiments of an elastoviscoplastic fluid in a thin mold-filling 
geometry, Journal of Non-Newtonian Fluid Mechanics. 30 (2022), 104851
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Computed drop shape for 0.3% Carbopol

 Experimental drop transitions from round to triangular as volume is increased
◦ For a fixed droplet volume, higher flow rate leads to a rounder droplet

 HB-Saramito model predicts this behavior (though imperfectly)
◦ BCY model struggles to show transition to a triangular shape at larger volumes
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Local Weissenberg number indicates normal stresses are 
non-negligible

12.9�cm26.4�cm23.2�cm2
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from experiment

Comparison of experimental and HB-Saramito shear rate

 For the available data, shear 
rate computed by the HB-
Saramito model is generally in 
agreement with experimental 
values

 Largest differences manifest 
near the inlet region:
◦ Magnitude of near-wall shear 
rate is overestimated – no slip 
BC near inlet doesn’t reflect 
experimental observations

◦ Experimental data pictured is 
smoothed – 8 pixel resolution 
over 10 images

5 mL/min,
2 in2

�̇

�̇
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from experiment

Comparison of experimental velocity to HB-Saramito computations
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Work in progress: flow simulations using the Kamani-Donley-Rogers 
(KDR)  EVP model

Target problem:
Steady flow of a 0.3% Carbopol solution over a sphere in a cylindrical 
vessel

Kamani, Krutarth, Gavin J. Donley, and Simon A. Rogers. Unification of the Rheological 
Physics of Yield Stress Fluids. Phys. Rev. Lett. 126:21 (2021): 218002
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HB-Saramito KDR

Flow 

Flow over a sphere: comparing the KDR and HB-Saramito models
19



Summary and conclusion

The numerical and modeling framework developed for this work predicts 
morphological changes of growing EVP drops observed in flow visualizartion 
experiments
 Drop shape predicted by HB-Saramito model consistent with experimentally-observed drop 

shapes

 HB-Saramito model yields accurate predictions for fluid drop height over a range of flow rates.

 Predicting drop width is more difficult – the EVP model considered was generally more accurate 
than the BCY model.

 Shear rate and horizontal velocity computed from the HB-Saramito model mostly agree with 
available experimental data. 
 Noticeable differences near the fluid inlet likely due to underestimation of local fluid slip on 

boundaries

 Ongoing efforts:
 Hele-Shaw and level set implementations of EVP models
 Unsteady flow simulations using the KDR model
 Confined free-surface flows over an obstruction
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