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Motivation for studying yielding fluids

Yield stress can be seen in wax, whipped cream,
toothpaste, lava, ceramic pastes, and Carbopol




Objective: develop computational models for
2 ¥ free-surface flows of yield stress fluids

Why is this needed?
« Accurate predictions of surface profiles and spreading
dynamics for flowing systems

Recent state-of-the-art in production codes:

 Ramp up viscosity arbitrarily high to “solidify” a fluid

* Does not accurately preserve the stress state that
develops in the material

* One way coupling between fluid and solid codes

Our approach:
* Develop and implement constitutive models that can
represent both solid and fluid behavior

2.5 mm shot, 40% injection speed

Green ceramic
processing
shows yield
stress and
both fluid and
solid-like

Target system: solidifying
continuous phase with particles
and droplets (e.g. polyurethane

)



- Viscoplastic (yield stress fluid) models
- Bingham: 0 = T, + 1y
=  Herschel Bulkley: 0 = 7,, + ky™

«  Viscoelastic models
= Maxwel: Ao +0 =2n,y
«  Kelvin-Voigt: 0 = Gy +ny

- Elastoviscoplastic (EVP) models

|UI—T:}? E .
klcrl“] 0= 2]/

*  P&Lmodel 2]: A6 + 0 = 2n,(V)y
«  KDR [3]: MG +a=n,(V)y + A7

»  Saramito [1]: %d + max[

1. P. Saramito. A new constitutive equation for elastoviscoplastic fluid flows. J. Non-
Newton. Fluid Mech., 145 (1) (2007), pp. 1-14

2. Y.S. Park, P.L.F. Liu. Oscilitory pipe flows of a yield stress fluid. . J. Fluid Mech. 658
(2010) 673-689

3. Kamani, Krutarth, Gavin J. Donley, and Simon A. Rogers. Unification of the
Rheological Physics of Yield Stress Fluids. Phys. Rev. Lett. 126:21 (2021): 218002




Some recent numerical EVP fluid studies

—_—

Particle sedimentation, oscillating, and elongational flow [1]

2-phase, buoyancy-driven flows [2]

Dam-breaking for a range of fluid properties (yield stress, elastic modulus, etc.) [3]
Collision of droplets with a vertical obstruction [4]

Droplet spreading on a pre-wetted surface [9]

. D. Fraggedakis, Y. Dimakopoulos, J. Tsamopoulos. Yielding the yield stress analysis: A thorough comparison of recently proposed

elasto-visco-plastic (EVP) fluid models. J. Non-Newton. Fluid Mech., 236 (2016), p. 104-122

P. Moschopoulos, A. Spyridakis, S. Varchanis, Y. Dimakopoulos, J. Tsamopoulos. The concept of elasto-visco-plasticity and its
application to a bubble rising in yield stress fluids. J. Non-Newton. Fluid Mech., 297 (2021), 104670

. C.M. Qishi, R.L. Thompson, F.P. Martins. Transient motions of elasto-viscoplastic thixotropic materials subjected to an imposed stress

field and to stress-based free-surface boundary conditions. Internat. J. Engrg. Sci., 109 (2016), pp. 165-201

C.M. Qishi, F.P. Martins R.L. Thompson. Gravitational Effects in the Collision of Elasto-Viscoplastic Drops on a Vertical Plane.
Fluids (2020) 5(2), 61

~Jalaal M Stoeber B Balmforth N .J Soreadina of viscoplastic droplets J Fluid Mech 914 (2021) o A21



‘ Equations of motion and stress constitutive equations
5

Momentum and Continuity
du _
Q(E+V -uu) =—-VP+V-Quy)+V-o+pg

V-u=20

Oldroyd-B stress constitutive model + Saramito yield model Solve with Finite Element

1 Method for u, P, @, and ¥

1 aa_l_v N 1 ns( ) =
G\at %) T |kleynt| C\O IO T AY

Herschel-Buckley (HB)-Saramito yield
model ;

5(0,7,) = (Om)

Iﬁdl Guénette, R. and Fortin, M. Journal of Non-Newtonian Fluid Mechanics
(1995) 60: 1, 27-52.

Saramito, P. Journal of Non-Newtonian Fluid Mechanics (2007) 145: 1, 1-14.
Fraggedakis, D et al. Journal of Non-Newtonian Fluid Mechanics (2007)

236, 104-122.
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We also consider a generalized-Newtonian constitutive
¢ I model

Momentum and Continuity

du
p(E+V -uu)=—vP+V-(2p¢1’)+pg

V-u=20

Solve with Finite Element

Method for u, P, and ¥
Bingham-Carreau-Yasuda model

_ _Fj .
<+ onae
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Mold filling geometry: flow between two thin plates

« Apparatus dimensions

L]

Inlet diameter = 0.38 cm
(x) W = Width = 152 cm
(y) Height > Width

(z) Gap between plates = 0.5 cm

- Experimental study
considers

- inlet flow rate: 5-20 mL/min

- 0-1 wt% Carbopol solutions

Propylene glycol 0.3% Carbopol

0.08% Carbopol 0.5% Carbopol

0.2% Carbopol 1% Carbopol




Trends for drop shape evolution
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= Fluid drop changes from triangular to round with

= increasing injection flow rate, Carbopol

concentration

= decreasing drop cross-sectional area
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= Height, width collapse onto a single curve
when scaled by effective diameter, D¢ f

s .
o Défs = cross-sectional area



‘ Characterization of Carbopol and parameter fitting
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HB-Saramito
1

1 /96 v 1 n 0.08 wt% Carbopol 0.30 wt% Carbopol
Ep (E + G) + ’W“ S(G’ T}’)ﬂ- = 2#-}, - 15 — ggfaramito 150 4+~ gg’-YSaramito
p__“ experimental + experimental
[Carbopol] [Pa-s [ [Pa] 1Pa] g 107 1007
0.08 wt%  4.04 25.2 3.01  0.446 § B I —— 50 - g
0.30 wt%  58.92 479.7  17.89 0.368 SN N N (N A KN N SO A A
103 10I—2 101—1 1(;0 10t 1073 101—2 10'—1 1(;0 10t
shear rate [s™%] shear rate [s™%]
Bingham-Carreau-Yasuda (BCY)
— efv n-1 : : : :
U= oo+ | o — Moo + Ty———|[1+ )] @ = The elastic modulus, G is determined via
Y small amplitude stress vs. strain data
[Carbopol] | mo[Pa-s] | u, [Pa-s] 7, [Pal Als] @  |n - Other rheological parameters were
determined using a nonlinear least squares
0.08 wt%  6.73 0.018 153 1.12 1.0 0.22 fit

0.30 wth  241.71 0.001 31.21  3.11 1.0 0.19



‘Mold filling simulations
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Constitutive models

_ gravity
= Bingham-Carreau-Yasuda Kinetic
(generalized Newtonian) S}émmetry capillary BCs .
I BCs v 1
= HB-Saramito =
Computations
= Finite element method in Goma
= Arbitrary Eulerian-Lagrangian No mesh
moving mesh framework motion
= Remeshing done every ~30
timesteps ~ Contact
Rl a}ngles No
Validation Experiments ?HE g)(()?d 2l penetration,
- 0.08, 0.30 wt.% Carbopol L - Tabulated gg"'er slip
- 5-20 mL/min inlet flow rate : ml éjy
velocity

X



HB-Saramito drop height/width
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5 ml/min 10 mL/min 20 mL /min
0 exp. height —— HB-Saramito
10.0 A T ¢ exp. width .
7.5 -
0.30%E

2.5 -
0.0 I 1 I I I 1 I I I

0 5 10 15 0 5 10 15

area, cim?

= HB-Saramito model is predictive of both height and
width, esp. at the lowest inlet flow rate

> width tends to be over-estimated with growing flow rate
and cross-sectional area

0.08% -

0 3 10 15

arca, f_'.IIlIz
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Computed drop height/width

12
5 ml/min 10 mL/min 20 mL /min
0 exp. height —— HB-Saramito
10.0 A T ¢ exp. width -+ = BCY

7.5 1 .
0.30% £

2.5 1 .

0.0 I I I I I 1 I I I

area, cim?

= Qverall, BCY model is less predictive of droplet dimensions, but accuracy
improves for the largest flow rate considered



‘Computed drop height/width
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5 ml/min 10 mL/min

20 mL /min

0 exp. height const. viscosity Saramito
10.0 - 1 ¢ exp. width -+ = HB-Saramito
—— BCY

7.5 - -
0.3% £

2.5 £ _——=cx

‘ ~ ex2DS 0
0.0 | T | | | T | | |
0 5! 10 15 0 5) 10 15 0 5 10 15
area, cim?
= Constant-viscosity Saramito model considered in previous
Work 150 - — (:];1_5; visc.(:sity Saramito
BCY «

> Stress/shear rate curve agrees with experimental data for low (<
1 s~ 1) shear rates

> Generally less predictive than the HB-variant of the Saramito model

> More accurate than BCY model for both height width predictions
despite stress/shear rate fit

J. McConnell, W. Ortiz, J.C. Sutherland, P. Newell, A.M. Grillet, A.M. McMaster, R.B. Bhakta, R.R.
Rao Computational modeling and experiments of an elastoviscoplastic fluid in a thin mold-filling
geometry, Journal of Non-Newtonian Fluid Mechanics. 30 (2022), 104851
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‘Computed drop shape for 0.3% Carbopol
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3.2 cm? 6.4 cm? 12.9 cm?

— HB-Saramito
- BCY

5 mL/min

10 mL/min

20 mL/min

= Experimental drop transitions from round to triangular as volume is increased
> For a fixed droplet volume, higher flow rate leads to a rounder droplet

= HB-Saramito model predicts this behavior (though imperfectly)
- BCY model struggles to show transition to a triangular shape at larger volumes



Local Weissenberg number indicates normal stresses are
15 1 non-negligible

: 7s — (crm _ o'yy)z + (C"'yy — C"zz)2 + (U'/xf - 0':1::1‘-)2
Pictured: Wi= \/ o, +o2, +o2,
Wi computed from HB-Saramito
model at Z-plane of symmetry for 32 cm? 64 cm?

0.3% Carbopol

E

= Alternating zones of high and low 227

. . :
W1 predicted to occur for the 2

129 cm?
1
range of tlow rates considered 0 H i, ) T

* High Wi zones may explain the §2 ]
' =
%%?iaéze shortcomings of the E (1) r - " g
=
- / V
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Comparison of experimental and HB-Saramito shear rate

16

= For the available data, shear
rate computed by the HB-
Saramito model is generally in
agreement with experimental
values

= Largest differences manifest
near the inlet region:

- Magnitude of near-wall shear
rate is overestimated — no slip
BC near inlet doesn’t reflect
experimental observations

o Experimental data pictured is
smoothed — 8 pixel resolution
over 10 images

D-S(]:'xy + ]”yx)

0.08 wt%,
5mL/min,

area = 12.9cm?

from experiment ! computed

y=01s"1 —>Qi£
—

0.3 wt%,
5mL/min,

area = 12.9cm?

from experiment ' computed

y=0.1 s‘l—’@i

e —

—0.2

—0.1 0.0 0.1

0.2




Comparison of experimental velocity to HB-Saramito computations
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. . 0.08 wt%, 0.3 wt%,
PlcFured. X- and y- velocities on a 5mL,/min, SmL/min,
horizontal line 4mm above the area = 12. 9cm?2 area = 12. 9cm?
bottom boundary (y = (0.4 cm) | 0.15 —— —

0.10 4 = = computed _ — = computed

= Computations match experimental
velocities fairly well
> Ditference in x-velocity influenced
by differences in computed and
experimental droplet heights

> Spatial averaging reduces the . ;’ﬁ‘ " compted |2 o
magnitude of y-velocity peaks "W i
0.10 I
[l 0.05
0.00 £ R ~ - - S
9 0 2 9 0 2



Work in progress: flow simulations using the Kamani-Donley-Rogers
18 1 (KDR) EVP model

v . v
416 +6 =ngy + ¥ A=Ay + A3

T o _ s
Uf=?y+k|}’|nl =7 =7

Target problem:

Steady flow of a 0.3% Carbopol solution over a sphere in a cylindrical
vessel

cylinderradius: R, = 10 cm,
n = 0.5 G = 525 Pa

k=715Pa-s" ns=30Pa-s

sphere radius: R, = 1 cm

Avg. inlet velocity : v;,;.r = 0.8 cm/s

No-slip BCs imposed on all solid surfaces Ty =14 Pa

Kamani, Krutarth, Gavin J. Donley, and Simon A. Rogers. Unification of the Rheological
Physics of Yield Stress Fluids. Phys. Rev. Lett. 126:21 (2021): 218002



Flow over a sphere: comparing the KDR and HB-Saramito models

HB-Saramito

1.2

Both EVP models exhibit axial 0.9

asymmetry of velocity field oo
° This asymmetry is more apparent with the -
KDR model 0.3

. . ) 0.0

An unyielded ring around the sphere is
predicted by both models

1200
Transition of the deviatoric stress

norm, |04]5 , is smoother for the KDR
model

s00

400
° lo4lz = 7y boundary for each model are
similar

1200

Both models predict substantial normal 8
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Summary and conclusion

The numerical and modeling framework developed for this work predicts
morphological changes of growing EVP drops observed in flow visualizartion
experiments

= Drop shape predicted by HB-Saramito model consistent with experimentally-observed drop
shapes

= HB-Saramito model yields accurate predictions for fluid drop height over a range of flow rates.

= Predicting drop width is more difficult — the EVP model considered was generally more accurate
than the BCY model.

= Shear rate and horizontal velocity computed from the HB-Saramito model mostly agree with
available experimental data.

= Noticeable differences near the fluid inlet likely due to underestimation of local fluid slip on
boundaries

Ongoing efforts:

- Hele-Shaw and level set implementations of EVP models
= Unsteady flow simulations using the KDR model

= Confined free-<tirface flows over an obs<triiction
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