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, | Overview: We develop and demonstrate an entangling gate
on trapped ions that is robust to a dominant noise source.

lon RF Paul Trap

Critical challenge: Error mitigation for

entangling gates

* Design pulses for robust operation

arxiv :

Schedule:
> Intro to trapped ion QC
- Mglmer—-Sgrensen Gates

- How our gate design
achieves robustness to trap
frequency drift.

daTl <1V > quant-ph > arXiv:2210.02372
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Frequency-robust Mglmer-Sgrensen gates via
balanced contributions of multiple motional modes

Brandon P. Ruzic, Matthew N. H. Chow, Ashlyn D. Burch, Daniel Lobser, Melissa
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Trapped ions show great promise for quantum E
computing... 2
but the entangling gates suffer from technical noise. ﬂ‘gfifl

i

Trappcd ions show great promise ... however

= SPAM > 0.99999 = Motional
[Zukas 2021] frequency drifts

« Single qubit rotations > 0.9999  Impact the
entangling gate.

|Ballance 2016, Gaebler 2016]

‘ Sideband Frequency (MHz)
= Peak entangling gate = 0.999

" It's hard to scale fearir
[Ballance 2016, Gaebler 2010] : f f
to large chains./ bsb |
Solution? Develop gates that are robust to trap J““m f

frequency drift that can be implemented on long chains.
2N radlal modes
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.1 Shared motional modes mediate entangling interactions

\ / / f Carrier

W 9/ F=1 frot Fosh
L

\ ] 1l
f
\? 9/9/ F=0 . . |
Red sideband: n-1 Blue sideband: n+1
N

Remove a phonon Add a phonon

* Motional sidebands at the trap frequency

Number of modes « Number of ions
« Coulomb interaction couples ions together
« Vibrational levels act as “bus” connecting qubits
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The Mglmer-Sgrensen (MS) interaction drives spin

entanglement and coherent displacement.

I Interaction Hamiltonian:
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Apply 2 Symmetrically Detuned Tones

H = —ﬂ(t)z §¢Jkﬁkei‘5kt + h.c.
K

x Bosonic annihilation operator for mode k
Spin S 10 =

0(t) = ne@@w
k

t
Phase space trajectory: |ax(t) = if Q(t"e Okt ¢’
0

‘da k( D, day
Governs spin entanglement: S (t) = Zf a (t") —a(t’)

Gate angle:
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I Ne oldldard (square, Conostalit IrequeriCy) wvio gdales lave

ISsues.

|deally, the gate generates flopping between |00) and |11) - never populating odd parity states.
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* Odd parity population does not go to zero.
» Narrow acceptable detuning range
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Separating displacement and rotation error clarifies gate
" failure analysis.

If a (1) # a(0), If O0(t) #m/2,
the gate is not where it started. is not equal to the target value.
We call this displacement error, €,4. We call this rotation error, ¢,..

then the motional state at the end of then the entangling phase accumulated I
C
Experimental Indicator : |01) and |10) Experimental indicator: ratio of |00) to |11) |

For robust gate, both €; and ¢, to be small over a broad acceptable range of input parameters.
Pioneering work by Brown and Monroe groups have found ways to minimize ¢;:

[Hayes et al 2012] [Choi et al 2014] [Leung et al 2018] |
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Gaussian pulse shape is ‘naturally’ robust to displacement
| error.

Square Gate Gaussian Gate
100 r— 10° 4
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In the Gaussian gate, we still need the right detuning and amplitude to get the right area enclosed,
but this shows broadly robust spin-motion disentanglement at the end of a Gaussian gate.
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‘Balanced’ gaussian gates take care of both rotation and

*Idisplacement error

Gaussian amplitude modulation and a specific frequency give broad robustness to frequency error

1 Displacement Error
10 :

104

Rotation Error
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State Fidelity
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Gates are simple to implement: no need to optimize tons of pulse-shape parameters
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Experiment shows balanced Gaussian is robust to +/-10

“"kHz trap frequency drift

0.1501 ¢  Balanced .
Peak fidelity = 97.7(4)% 019 | #  Unbalanced
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€d

We find good prospects for scaling to more
ions.

10—6_

1079

Numerical simulations for chains of up to 33 ions

Fixed center ion separation: results shown are for 3 um

Displacement Error

N =3 to 33
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Max infidelity over +3 kHz
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Sensitivity (right plot) depends almost entirely on the splitting of nearest two modes
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« | Gaussian pulse parameters
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s | RF Traps for lons

Trapping requirement: A restoring force when displaced from trap center

(3n Arivs Aivactian)

Cannot use
v

ut” and

rections
Field lines

start/en

/ .Courtesy of Wes
"~ Campbell




16‘ Crash Course in Trapped lon Quantum Computing

171Yb+

D[3/2)y)2 D[3/2)12

-0 — 1)
. )

Cool Pump Detect Qubit Rotations

« Sidebands on cooling laser (370nm) allow incoherent control processes
* Pulsed laser (355nm) Raman transitions for qubit rotations
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The Maglmer-Sgrensen (MS) gate is derived from a spin-

dependent force.

1) ——

f Carrier

f rsb f bsb

| |
N\ /

Apply 2 Symmetrically Detuned Tones

1 Lee, Patricia J.,

Spin dependent force’:

g! =¥ G, de —i(6t—¢y) +§_afe+i(6t—cpr})
_I_ﬁnT‘Q ~+a+€+i(5r+¢b)+§_ae—i(6r+qbb))

. hna

H — T (ae_l(at""q’ﬂ'f) + a+e+t(6t+¢ﬂf})d .

Drive loops in phase space, pick up
geometric phase.

« Spin and motional parts of the
wavefunction are disentangled
when phase loops close.

« Fully Entangling Gate encloses a

phase space area of g

“Quantum Information Processing with Two Trapped Cadmium lons”, Univ of Michigan, 2006

QSCDUT

Jaynes-Cummings +
Anti Jaynes-Cummings

Rearrange into Spin
and Motion Phases

SP2 |0y, 14)
| .l. <x>
e"®[14,04)
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Im(a)

Gaussian MS Gates Show Better Loop Closure than

Square MS
Square Gate
0.3 A
0.2 A1
0.1 A
0.0 A
—0.1 A
-0.2
—0.3 1 . : : : _
-0.5 -0.4 -0.3 -0.2 -0.1
Re(a)

Gate parameters (for both):

* Detuning is -40 kHz below the lowest
frequency mode in a 2 ion chain.

« 200 us duration

0.0

0.4 -

0.2 -

Gaussian Gate

-04 -0.3 -0.2 =01 0.0 0.1 0.2 0.3 0.4
Re(a)

Notable differences:

« All modes end close to the starting point

for Gaussian gate.

« Time averaged displacement close to

zero for the Gaussian gate.
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» | Intuition for Phase Space Trajectories (PSTs)

PST for Square MS Gate

0-31 How pulse parameters come into play:
. « Detuning controls the angular velocity and
' radius in phase space.
0.1 « Smaller detuning - Bigger, slower circles
= « Rabi rate controls only radius.
E %0 « Phase can change the direction of rotation.
—-0.1 4
Figures of merit:
—0.21 * Loop closure of each mode: @ (0) = ay (tgate)?
03- « Area enclosed: Is the gate angle right?
~0.5 —04  —-0.3 ~0.2 -0.1 0.0
Re(a)
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» | Displacements During the MS Gate

Interaction Hamiltonian:

. hnn
g, =1

;= 2 “E—i(5f+¢)M) + a+€+£(5t+¢M))a‘. . qbs

State dependent drive force gives coherent displacement by a; on mode k [1]: |
D(&) = exp(@ray — @yay )
In the simplest case (+1 eigenstate of ,, no laser phase difference) [1]:
ay = %(m,k +7x) f;e’igk("’) dt’ where 6, (t") = fﬂt! 5, (t")dt" is the accumulated phase

So, for a constant detuning and Rabi rate, we get circular trajectories in phase space,
with closure condition: t;4¢ = 2nm/@9

Closed loops are required for spin-motion disentanglement at the end of the gate.

[1] Leung et al., PRL 120, 020501 (2018)



21‘ FM and Constant Frequency Gaussians Are Comparable

Optimal Detuning
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See essentially the same odd parity population near
optimized detuning.

Area enclosed still has roughly the same sensitivity (slope
of 11/00 crossing) as constant frequency case.
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Fidelity

Gaussian Pulse Shape Dominates Gate Performance
(with Current Cost Functions)

Fidelity of MS Gate
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Next steps:

Further development of gate angle cost function

Batch optimization
Transfer function optimization
Larger chains
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23‘ Optimizer/Data Comparison For FM Gaussian

7/15/21: 220us Gaussian FM Gate Theory Comparison
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Gaussian MS, 200 us
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Mgalmer-Serensen Entangling Gate

1
* 100) - 7 (]00) +[11))
Implementing with Octet

» Gaussian pulse shaping drastically improved our two-
qubit gate performance
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Constant Frequency Gaussian MS Gates Work Well

Parity, Gaussian MS, 200 us, -33.7 kHz
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Entanglement Fidelity ~0.98

* Narrow acceptable detuning and
amplitude range

Area enclosed sensitive to small
changes in trap RF




