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Overview: We develop and demonstrate an entangling gate 
on trapped ions that is robust to a dominant noise source.
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Ion RF Paul Trap

Critical challenge: Error mitigation for 
entangling gates

        Design pulses for robust operation

+ + +

 Schedule:
◦ Intro to trapped ion QC
◦ Mølmer–Sørensen Gates 
◦ How our gate design 
achieves robustness to trap 
frequency drift.
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Trapped ions show great promise for quantum 
computing...

but the entangling gates suffer from technical noise.
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 … however
 Motional 
frequency drifts 
impact the 
entangling gate.

 It’s hard to scale 
to large chains.
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Solution? Develop gates that are robust to trap 
frequency drift that can be implemented on long chains.  

Sideband Frequency (MHz)
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Shared motional modes mediate entangling interactions4
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Red sideband: n-1
Remove a phonon

Blue sideband: n+1
Add a phonon

• Motional sidebands at the trap frequency

+ + + F=1

F=0
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The Mølmer-Sørensen (MS) interaction drives spin 
entanglement and coherent displacement.
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Interaction Hamiltonian:
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Apply 2 Symmetrically Detuned Tones

Propagator:

Bosonic annihilation operator for mode k

Spin 
operator, 

ᵯ� ᵅ�ᵯ� ᵅ�

Governs spin entanglement: 

Gate angle: 

Phase space trajectory: 
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The ‘Standard’ (square, constant frequency) MS gates have 
issues.
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• Odd parity population does not go to zero.
• Narrow acceptable detuning range
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Separating displacement and rotation error clarifies gate 
failure analysis.7

If If
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[Hayes et al 2012] [Leung et al 2018][Choi et al 2014]



Gaussian pulse shape is ‘naturally’ robust to displacement 
error.8

Square Gate Gaussian Gate

In the Gaussian gate, we still need the right detuning and amplitude to get the right area enclosed, 
but this shows broadly robust spin-motion disentanglement at the end of a Gaussian gate.
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‘Balanced’ gaussian gates take care of both rotation and 
displacement error9

State Fidelity

Pulse shape: Balanced Gaussian, Gaussian, Square

Displacement Error Rotation Error

Gaussian amplitude modulation and a specific frequency give broad robustness to frequency error 

Gates are simple to implement: no need to optimize tons of pulse-shape parameters
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Experiment shows balanced Gaussian is robust to +/-10 
kHz trap frequency drift10

Peak fidelity = 97.7(4)%
Drop in fidelity over +/-10 kHz < 1% 

Zig-zag Tilt3 ion modes:
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We find good prospects for scaling to more 
ions.11

Rotation ErrorDisplacement Error

• Sensitivity (right plot) depends almost entirely on the splitting of nearest two modes
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N = 3 to 33 N = 3 to 33
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Extra Slides Beyond13



Gaussian pulse parameters14

ᵆ�

ᵰ�



RF Traps for Ions

Known as saddle points

Trapping requirement: A restoring force when displaced from trap center
(in any direction) 

Electric field lines “squirt out” and 
create anti-traps in some directions 

Cannot use static electric fields to 
trap a charge 

Field lines cannot cross, and must 
start/end on sources/drains
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Courtesy of Wes 
Campbell

Before ion escapes, field reverses! 



Crash Course in Trapped Ion Quantum Computing16

Cool Pump Detect

|1⟩
|0⟩

|ᵅ� ⟩

Qubit Rotations

• Sidebands on cooling laser (370nm) allow incoherent control processes
• Pulsed laser (355nm) Raman transitions for qubit rotations 

171Yb+



The Mølmer-Sørensen (MS) gate is derived from a spin-
dependent force.
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Spin dependent force1:
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Apply 2 Symmetrically Detuned Tones

1 Lee, Patricia J., “Quantum Information Processing with Two Trapped Cadmium Ions”, Univ of Michigan, 2006

Rearrange into Spin 
and Motion Phases

Jaynes-Cummings + 
Anti Jaynes-Cummings
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Gaussian MS Gates Show Better Loop Closure than 
Square MS18

Square Gate Gaussian Gate

Notable differences:
• All modes end close to the starting point 

for Gaussian gate.
• Time averaged displacement close to 

zero for the Gaussian gate.



Intuition for Phase Space Trajectories (PSTs)19

PST for Square MS Gate



Displacements During the MS Gate20

Interaction Hamiltonian:

[1] Leung et al., PRL 120, 020501 (2018)



FM and Constant Frequency Gaussians Are Comparable21

• See essentially the same odd parity population near 
optimized detuning.

• Area enclosed still has roughly the same sensitivity (slope 
of 11/00 crossing) as constant frequency case.



Gaussian Pulse Shape Dominates Gate Performance
 (with Current Cost Functions)22

Next steps:
• Further development of gate angle cost function
• Batch optimization
• Transfer function optimization
• Larger chains



Optimizer/Data Comparison For FM Gaussian23



Constant Frequency Gaussian MS Gates Work Well
24

Implementing with Octet
• Gaussian pulse shaping drastically improved our two-

qubit gate performance

• Narrow acceptable detuning and 
amplitude range

• Area enclosed sensitive to small 
changes in trap RF 


