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Particle aggregation and oriented attachment
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along the basal plane.

Banfield J. F. et al. (2000). Science 289, 751-754. _ )
Anovitz L. M. et al.(2018) Langmuir 34, 15839-15853.
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3 ‘ Motivations m

1. Dewatering and Compaction

* Mineral colloids including gibbsite,
aggregate, settle, and compact on
the floor of the Hanford waste
tanks.

* Aggregation affects rheology of the
waste

* Dewatering of interparticle regions
during sedimentation affects

porosity, the more rapidly the
Initial Simulation Cell Fast water removal Slow water removal platelets are deposited, the less

Ho T. A. et al. (2017) Scientific Reports 7. time to remove water.

2. Oriented Attachment
e Oriented attachment is a special case of particle
aggregation and crystal growth. I
* Crystalline particles assemble into a larger particle/crystal
by attaching on specific crystal faces that are lattice-
matched.




System 1: Gibbsite particle-particle attachment
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Model Gibbsite Particle Basal-Basal
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6 ‘ Energy barriers

Approaching motion Sliding motion
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‘ Roles of water
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* Water controls the fluctuations in the PMF profiles for all three motions studied
* Water reduces the interaction between two particles
 However, particles still “feel” each other in water.



Water structure and H-bond Network
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System 2: Gibbsite slab-gibbsite particle alignment: TW + translation
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10 ‘ Gibbsite slab-particle alignment: TW compared to 2W
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Magnitude of energy barrier decreases from >10 to <2 kcal/mol from 1W to 2W
Complete mismatch is most unfavorable at 2.5 A for 2W; H-bonding more important in TW case. C shows cI



1 1 Conclusion

- We have observed that in an aggregate of particles oriented attachment is a function of rate of
water removal but is energetically preferred.

« We have studied the energy-structure relationships during two gibbsite particles in close proximity
approaching, sliding, and rotating to achieve oriented attachment and found that the “jump to
contact” that occurs once the particles are crystallographically aligned is the highest energy barrier
to oriented attachment.

« The translation of the particle over a slab at TW exhibits a more symmetric PMF that particle-
particle PMF because the surface area of the interaction remains constant.

- The H-bonds that form between the gibbsite surfaces and interlayer water play a key role in the
energetics of surface alignment.
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