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Materials for Fusion Energy2

• Difficult to develop materials to handle 
extreme conditions within tokamak

•Large heat loads of 10-20 MW/m3

• High particles fluxes of ~1024 m-2s-1 of 
mixed ion species (H/He/Be/N etc.)

iter.org
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Ye, et al. J. Nucl. Mater. 313-316, 72-76 (2003)

Kreter, et al. Nucl. Fus.. 59, 086029 (2019)

Effect of Plasma Impurities on Hydrogen Retention
Kajita, et al. J. Nucl. Mater, 418, (2011) 152-158

Helium Fuzz Growth
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Materials for Fusion Energy3

• Difficult to develop materials to handle 
extreme conditions within tokamak

•Large heat loads of 10-20 MW/m3

• High particles fluxes of ~1024 m-2s-1 of 
mixed ion species (H/He/Be/N etc.)

• Many complex processes that occur at the 
plasma/material interface that can lead to 
material degradation

Wirth, et al.  MRS Bulletin 36 (2011) 216-222
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Tungsten Divertor

Plasma: 
~90% H/10% He
With impurities 

(Be,N,etc.)



Multiscale Modeling of Materials
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Multiscale Modeling of Materials
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Why do we need ML-IAPs?  6

We want to model very complex 
physics at the plasma-material 

interface.  
How do we do this?

M Mayer et al 2016 Phys. Scr. 2016 
014051 

Wirth, et al.  MRS Bulletin 36 (2011) 
216-222

Electronic Structure 
Methods

 Highly accurate
 Can model a lot of relevant 
physics
 Very expensive, O(N3) 
scaling, ~100 atoms

Classical Potentials
 Lots of functional forms that 
are good for many different 
materials
 Scales well
 Accuracy highly dependent 
on potential and application
 Functional form limits type of 
physics that can be modeled

Machine Learned Interatomic Potentials
 Trained to electronic structure data for increased accuracy
 Flexible, not limited by inherent physics of model
 Quantum accuracy but MD scalability 
 Need good training data for accurate model



What Makes a Machine Learned Interatomic Potential?7

Descriptor
• Describes the local atomic  

environment
• Requirements

• Rotation/Translation/. 
Permutation invariant

• Equivariant forces
• Smooth differentiable
• Extensible

• Some Examples
• Bispectrum, SOAP, ACE, 

Moment Tensors, etc.

Regression Method
• Linear regression
• Kernel ridge regression
• Gaussian process
• Non-linear optimization
• Neural Networks

Training Data
• Generated using quantum 

methods
• Can include:

• Energies
• Forces
• Stresses

• Variety of atomic 
configurations 
• Bulk structures, liquids, 

surfaces, defects, etc. SNAP
• Energies, forces, and 

stresses from DFT
• Bispectrum component 

descriptors
• Linear regression



SNAP Definition and Work Flow
8

Model Form

Regression Method
• β vector fully describes a SNAP potential
• Decouples MD speed from training set size

DFT TrainingSet of DescriptorsWeights

Code available: https://github.com/FitSNAP/FitSNAP

M. A. Wood, M.A. Cusentino, B.D. Wirth and A.P. Thompson, Phys. Rev. B 99, 
184305

SNAP Development 
Workflow



SNAP Development for W-H9

Training 
Data

Fitted Properties
• Energy/Force errors
• H defect formation energies
• H dimer/trimer binding curves

Initial 
Results

W: Grey H: Green N: Pink

H Ads. DFT (eV) SNAP (eV)

(100) Ads. Site Bridge Bridge

(100) Ads. Energy -0.96 -2.41

(100) H2 Ads. Energy -0.80 -4.99

(110) Ads. Site Hollow Hollow 

(110) Ads. Energy -0.75 -2.64

(111) Ads. Site Bridge Hollow

(111) Ads. Energy -0.59 -3.34

Adsorption Energies

Bulk Defects DFT (eV) SNAP (eV)

0.88 0.91

1.26 1.24

4.08 4.42

-4.74 -4.77

Defect Formation 
Energies

Hydrogen Binding 
Curves

H2 at 1000 K



SNP Development for W-N
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Fitted Properties
• Energy/Force errors
• N defect formation energies
• N adsorption energies
• N dimer/trimer binding curves
• WxNy cohesive energies

Initial 
Results

W: Grey H: Green N: Pink

Defect Formation Energies

Surface Adsorption 
Energies

WxNy Formation 
Energies

Training 
Data

DFT (eV) SNAP (eV)

(100) Ads. Site Hollow Hollow

(100) Ads. Energy -3.52 -4.33

(110) Ads. Site Hollow Hollow

(110) Ads. Energy -3.59 -2.97

DFT (eV) SNAP (eV)

WN2– P62mmc -1.82 -1.82

WN2– P6m2 -0.91 -1.75

WN - NiAs -0.84 -0.74

WN - WC -0.23 -1.51

W2N -0.03 3.29

Bulk Defects DFT (eV) SNAP (eV)

1.85 1.89

1.11 1.09

4.72 2.90

-9.79 -9.47

Nitrogen Binding 
Curves

N2 at 1000 K



Single Ion Implantations in Tungsten
 Single ion implantations to assess depth profile
•  10 eV, 75 eV, and 100 eV hydrogen or nitrogen for 1,000 separate implantations
• 1000 K for (100) tungsten surface
• Simulations performed for 2 ps and depth is recorded

11

Hydrogen Depth 
Profile

Nitrogen Depth Profile

Reflectio
n

Implantatio
n

Surface 
Adsorptio
n

W: Grey H: Green N: Pink



Cumulative Implantation Simulations - Hydrogen12

Hydrogen onto (100) 
Tungsten

(110) 
Surface

(111) 
Surface

Formation of 2D Hydrogen Platelets 2D Hydrogen Clusters 
Predicted by DFT

Yang and Wirth, J. Appl. Phys. 125, 16510 (2019)

W: Grey H: Green



Hydrogen Retention in Tungsten13

Surface 
Orientation

Temperature

Hydrogen Retention

Flux

Cluster Distributions

Surface 
Orientation Temperature Flux



Large-Scale Simulations of Hydrogen Trapping At Grain 
Boundaries

14

Modeling 0.01% H 
concentration in twin 

grain boundary

4 ns of 
hydrogen 
diffusion

Cluster Growth Over Time

Hydrogen Trapping Over 
Time



Large-Scale Simulations of Hydrogen Trapping At Grain 
Boundaries
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Polycrystalline Tungsten

Competitions of hydrogen 
trapping at the GB or in 
bulk?

Hydrogen Seeded 
Everywhere

Hydrogen Seeded in Grain



Large-Scale Simulations of Hydrogen Trapping At Grain 
Boundaries

16

W: Grey H: Green

Hydrogen 
Trapping

Hydrogen 
Retention

Hydrogen Implantation in Twin GB at 
12 ns

Twin Grain 
Boundary

50 nm

25 nm



Does DFT Support Platelet Formation?17

7x7x7 W supercell with 11H; 123 fs
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Partial Charge Distribution -5 to EF
(energy resolved electron visualization) 

Electron Localization Function
(visualization of all calculated electrons)

Hydrogen atoms can share there electrons out to at 
least 4.2 Å
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LDOS – Single H Atom LDOS – H Platelet

Does DFT Support Platelet Formation?

Additional hydrogen atoms continue to accumulate electrons in region near 
platelet



Implantation simulations19

Nitrogen onto (100) 
Tungsten Ordered Structures Emerging on 

Surface

W: Grey N: Pink

(110) 
Surface



Near-Surface Tungsten Nitride Growth20

W-N-N 
Bonds

W-N-W 
Bonds

N-W-N 
Bonds

N 
Implantation

(100) Surface
30 ns

Region 
Analyzed

• Bond angle analysis to determine 
structure in near-surface region

• Analyzed from depth of 10 Å and 
above

W: Grey N: Pink



Future SNAP Work: W-Be-H and W-N-H21

W-N-H SNAP
 Interest in studying hydrogen trapping in tungsten 
nitrides and potential ammonia formation on the 
surface

Currently generating training data for W-N-H
 H/N on surfaces and in bulk, ammonia, ordered 

and DFT-MD structures

 Focus on H-N surface interactions

W-Be-H SNAP
 Expand previous W-Be SNAP potential to 
include hydrogen

Initial training data and fits have been performed

Initial potentials are stable, especially in bulk, but 
H surface behavior is poor i.e. H quickly 
evacuates Be surfaces

Generated new training data based on 
performance of earlier potentials

H Stable in bulk 
C14 H 

immediatel
y leaves 

C14 
surface

W: Grey H: Green N: Pink Be: 
Purple



Improving Potentials with Active Learning22

FitSNAP Workflow

Most Effort Here Introduce Additional Training Data
“By Hand” Active Learning

Testing:
Poor Behavior

Run Vasp

Improved 
Behavior



Summary and Future Work
• Understanding material degradation in PFMs is 
critical for designing viable fusion reactors  

• Atomistic modeling plays a key role in understanding 
relevant physical mechanisms for material 
degradation at the divertor

• We have developed a variety of SNAP potentials for 
studying PMIs in tungsten and these potentials have 
been used to for large-scale MD simulations

• Future Work:
• Development of W-Be-H potentials to study H retention in 

mixed W-Be surfaces
• Development of W-N-H to study H trapping and ammonia 

formation on W-N surfaces

23

Contact: 
mcusent@sandia.gov



Backup Slides
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Twin GB (H = 0.01%, 0.1%, 1%), H-concentration (MW 
plot)

W H-1%W H-0.1%

W H-0.01%



Σ5 GB (H = 0.01%, 0.1%, 1%), H-concentration (MW plot)

W H-1%W H-0.1%

W H-0.01%



Twin GB (H = 0.01%, 0.1%, 1%), cluster information

W H-1%W H-0.1%

W H-0.01%



Σ5 GB (H = 0.01%, 0.1%, 1%), cluster information

W H-1%W H-0.1%

W H-0.01%



Large-Scale W-H Simulations on Summit29

Modeling different GB configurations to investigate trapping at platelets vs. GBs

Polycrystalline W with H SeedingH Distribution with Twin GB H Implantation with Twin GB

*


