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.| Materials for Fusion Energy

» Difficult to develop materials to handle
extreme conditions within tokamak

Large heat loads of 10-20 MW/m?

» High particles fluxes of ~102* m-2s-1 of
mixed ion species (H/He/Be/N etc.)

Hydrogen Helium Fuzz Growth
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W-Be Intermetallics

Be1 W Be deposits (surface)
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;1 Materials for Fusion Energy

» Difficult to develop materials to handle
extreme conditions within tokamak

Large heat loads of 10-20 MW/m?

» High particles fluxes of ~102* m-2s-1 of
mixed ion species (H/He/Be/N etc.)
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Many complex processes that occur at thg
plasma/material interface that can lead to
material degradation



Multiscale Modeling of Materials
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5 ‘ Multiscale Modeling of Materials

Hydrogen Potential ¥
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Why do we need ML-IAPs?

We want to model very complex
physics at the plasma-material
interface.

— 20 piin ——

M Mayer et al 2016 Phys. Scr. 2016
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Electronic Structure Classical Potentials
Methods = Lots of functional forms that
= Highly accurate are good for many different
= Can model a lot of relevant materials
physics = Scales well
= Very expensive, O(N3) = Accuracy highly dependent
scaling, ~100 atoms on potential and application

= Functional form limits type of
physics that can be modeled
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Machine Learned Interatomic Potentials
= Trained to electronic structure data for increased accuracy
= Flexible, not limited by inherent physics of model
= Quantum accuracy but MD scalability
= Need good training data for accurate model




7 I What Makes a Machine Learned Interatomic Potential?

Training Data

« Generated using quantum
methods
« Can include:

Energies
Forces
Stresses

* Variety of atomic
configurations

Bulk structures, liquids,
surfaces, defects, etc.

Descriptor
Describes the local atomic
environment
Requirements

* Rotation/Translation/.
Permutation invariant

« Equivariant forces

 Smooth differentiable

 Extensible

Some Examples

« Bispectrum, SOAP, ACE,
Moment Tensors, etc.

Regression Method
Linear regression

Kernel ridge regression
Gaussian process
Non-linear optimization
Neural Networks

SNAP

Energies, forces, and
stresses from DFT
Bispectrum component
descriptors

Linear regression




SNAP Definition and Work Flow

Model Form

* Energy of atom i expressed as a basis expansion over K
components of the bispectrum (B},)

K
EE’NAP = Bo + Zﬁ-’ﬂ(BE: - B!zcﬂ)
k=1

Regression Method

» B vector fully describes a SNAP potential
* Decouples MD speed from training set size

min(||w - DB — T||* — v |18]|™)

0" é ",
o L] e
Weights  Set of Descriptors DFT Training

SNAP Development
Workflo

Active Learning Data

i
b0 0 New training data added
3 D @ )
a
F;E‘LP‘ TL\-AF.' f\pf
Early candidate
potentials used DFT Reference Data
> . -
to generate %%’ % r.T f;)«:;‘d
more data 'G'{'f-' o el 08
. sno® ., 4 a0a
Candidate Parameters 8 e PREgus)

- Hyperparameters
- Group Weights

Dakot limization FitSNAP. Training data read
- Genetic algorithm to - (Calculates bispectrum components

into FitSNAP.py

generate fitting parameters - Performs linear Regression

)> - Generates potential

DAKOTA

Objective Functions

- Energy/Force Errors
- Material Properties
(i.e. defect formation
energies)

Code available: https://github.com/FitSNAP/FitSNAP

M. A. Wood, M.A. Cusentino, B.D. Wirth and A.P. Thompson, Phys. Rev. B 99,
184305




9 ‘ SNAP Development for W-H

Training Defect Formation :::slilns H, at 1000 K
Nata Bulk Ije‘fe\;ts‘ | DFT (eV)
ET*‘(eV) 0.88 0.91
- E9°(eV) 1.26 1.24
EF“?(eV) 4.08 4.42
Ef?(eV) -4.74 -4.77

Adsorption Energies Hydrogen Binding

Curvac
S

DFT (V) SNAP (eV)
(100) Ads. Site Bridge Bridge =
(100) Ads. Energy -0.96 -2.41 Z
Fitted Properties (100) H, Ads. Energy -0.80 -4.99 E i
c = (110) Ads. Site Hollow Hollow E
Nergyrrorce errors . (110) Ads. Energy -0.75 -2.64 =
* H defect formation energies 1) Ads. Sit 5 ol
e H dimer/trimer binding curves (111) Ads. Site rese omoW e —
(111) AdS, Energy -0.59 -3'34 0.4 06 0.8 L0 {;1]_’ 14 LG 1.8

W: Grey H: Green N: Pink



SNP Development for W-N

10 Defect Formation Energies  Initial
- Results
Training 185 1.89 N, at 1000 K
i |
; 1.11 1.09 e ¢
4.72 2.90
Y o
9.79 9.47
Jo
Surface Adsorption “‘ D

| DFT(eV) | SNAP(eV)

(100) Ads. Site Hollow Hollow
(100) Ads. Energy  -3.52 4.33 Nitrogen Binding

(110) Ads. Site Hollow Hollow . e o Temeber
(110) Ads. Energy -3.59 -2.97 09 . -

W,N, Formation

Fitted Properties o e Towr v

Potential Energy (eV)

]
. Energy/Force errors WNZ- P62mmc -1.82 -1.82 5
* N defect formation energies WN,- P6m?2 -0.91 -1.75
* N adsorption energies WN - NiAs -0.84 -0.74

* N dimer/trimer binding curves

) : WN - WC -0.23 -1.51 r ()
* W,N, cohesive energies _
W:N -0.03 3.29 W: Grey H: Green N: Pink



W: Grey H: Green N: Pink

11 ‘ Single lon Implantations in Tungsten

Single ion implantations to assess depth profile

. 10'eV, 75 eV, and 100 eV hydrogen or nitrogen for 1,000 separate implantations

* 1000 K for (100) tungsten surface

» Simulations performed for 2 ps and depth is recorded

Nitrogen Depth Profile

Hydrogen Depth

Profile
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‘ _ _ _ _ W: Grey H: Green
2 I Cumulative Implantation Simulations - Hydrogen

Hydrogen onto (100) Formation of 2D Hydrogen Platelets 2D Hydrogen Clusters
Tungsten Predicted by DFT
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13 ‘ Hydrogen Retention in Tungsten

Percent Retention
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14 ‘ Large-Scale Simulations of Hydrogen Trapping At Grain

Cluster Growth Over Time
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grain boundary
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15 ‘ Large-Scale Simulations of Hydrogen Trapping At Grain
Boundaries

Polycrystalline Tungsten

Hydrogen Seeded Hydrogen Seeded in Grain
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6 | Large-Scale Simulations of Hydrogen Trapping At Grain
Boundaries

Hydrogen Implantation in Twin GB at o [ B
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17 ‘ Does DFT Support Platelet Formation?

Partial Charge Distribution -5 to E¢
(energy resolved electron visualization)

Electron Localization Function
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Density of States (arbitrary units)
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W: Grey N: Pink
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‘ W: Grey N: Pink
20 I Near-Surface Tungsten Nitride Growth W-N-W

oo Bon —
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Implantation
(100) Surface 2
30T 5
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Bonds ——
| I| o B Mt ™M
[ | 0 § . - i Ilfu i ) '._ ——
o I h Count _
= |
Z il N-W-N
it Bonds NN
[ 0 W2
|I | _.'I \ 500 4 WN
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W: Grey H: Green N: Pink Be:
21 | Future SNAP Work: W-Be-H and W-N-H"urple

W-Be-H SNAP
W-N-H SNAP . _
= Expand previous W-Be SNAP potential to

= |nterest in studying hydrogen trapping in tungsten include hydrogen

nitrides and potential ammonia formation on the N o _

surface =[nitial training data and fits have been performed
=Currently generating training data for W-N-H =[nitial potentials are stable, especially in bulk, but

= H/N on surfaces and in bulk, ammonia, ordered H surface behavior is poor i.e. H quickly
and DFT-MD structures evacuates Be surfaces

=Generated new training data based on
performance of earlier potentials

= Focus on H-N surface interactions

H Stable in bulk -'3.;3..‘.,.;_. ’
::"b:"" immediatel

cesdeess yleaves
RISk C14

SRS
caa eyl surface
a¥ey%0,%,"

a.‘dt'oc




22 ‘ Improving Potentials with Active Learning

Most Effort Here
I

Active Learning Data
p ) J b x
o %b % New training data added
s N 4
Early candidate

potentials used DFT Reference Data

o909 — 2
0’0000 heT
eeen -SRIl LD
090y 't s
.'l. Q.O. .‘ ‘l' &y
po0e .. %W )

&> | . a

to generate
more data

Candidate Parameters
- Hyperparameters

- - Group Weights
(" Dakota Optimization | ini
EitSNAP.py Training data read
- Genetic algorithm to - Calculates bispectrum components into FitSNAP.
generate fitting parameters - Performs linear Regression ¥

> T

1.5 U Improved
Objective Functions .
- Energy/Force Errors Be h avior

- Material Properties
(i.e. defect formation
energies)

FItSNAP Workflow

Introduce Additional Training Data
“By Hand” Active Learning

Testing:
Poor Behavior




23 I Summary and Future Work

* Understanding material degradation in PFMs is
critical for designing viable fusion reactors

» Atomistic modeling plays a key role in understanding
relevant physical mechanisms for material
degradation at the divertor

* We have developed a variety of SNAP potentials for
studying PMIs in tungsten and these potentials have
been used to for large-scale MD simulations

Objective Functions,
Material Properties

@ 0 ¢ 9 o

* Future Work: M 'c‘." .0‘ ©
* Development of W-Be-H potentials to study H retention in | "o D "‘o“' ®
mixed W-Be surfaces 270 0 o

* Development of W-N-H to study H trapping and ammonia “ .‘a° o

formation on W-N surfaces L _*e*." o

oroe o JOAK RIDGE | e

Science National Laboratory | FACILITY

Contact:
mcusent@sandia.gov
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‘ Twin GB (H=0.01%, 0.1%, 1%), H-concentration (MW
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‘ 25 GB (H=0.01%, 0.1%, 1%), H-concentration (MW plot)
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Cluster Size

Twin GB (H = 0.01%, 0.1%, 1%), cluster information E
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Cluster Size

N u(E:;acn ~ ® ©

25 GB (H=0.01%, 0.1%, 1%), cluster information

Cluster Size

W H-0.1%

6
5
4
3

2
1

Time [ns]

1000

100

Population

—
o

W H-1%

W H-0.01%
0 5 10 15 20
Time [ns]

14
1000 12
c s 1
100 2 o (g

=] e

o w)

S >

10 ©

T<T=1

o N A

Time [ns]

1000

100

10

Population



H Mean Squared Displacement (A2)

29 ‘ Large-Scale W-H Simulations on Summit

Modeling different GB configurations to investigate trapping at platelets vs. GBs

H Distribution with Twin GB Polycrystalline W with H Seeding H Implantation with Twin GB
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