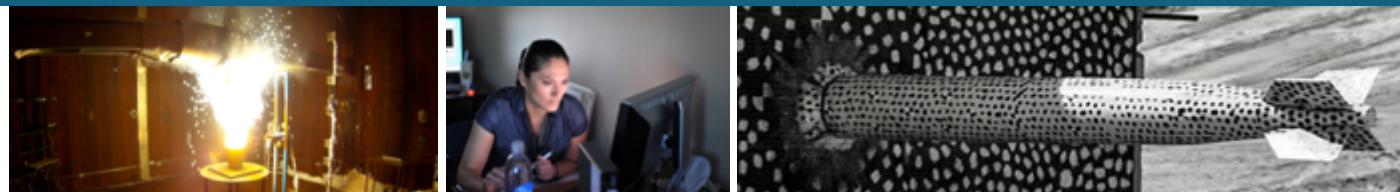


Sandia
National
Laboratories

Molecular Dynamics Modeling of Hydrogen and Nitrogen Implantation in Tungsten Using Machine Learned Interatomic Potentials



Mary Alice Cusentino, Megan J. McCarthy, Ember L. Sikorski, Mitchell A. Wood, and Aidan P. Thompson

10th International Conference on Multiscale Materials Modeling
October 4, 2022

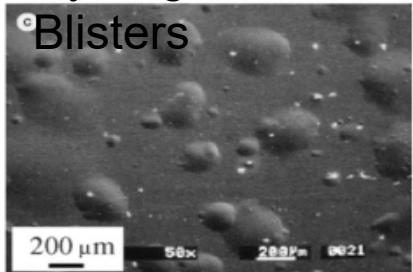
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2 Materials for Fusion Energy

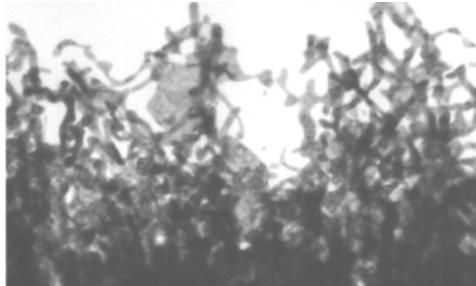
- Difficult to develop materials to handle extreme conditions within tokamak
- Large heat loads of 10-20 MW/m³
- High particles fluxes of $\sim 10^{24}$ m⁻²s⁻¹ of mixed ion species (H/He/Be/N etc.)

Hydrogen Blisters



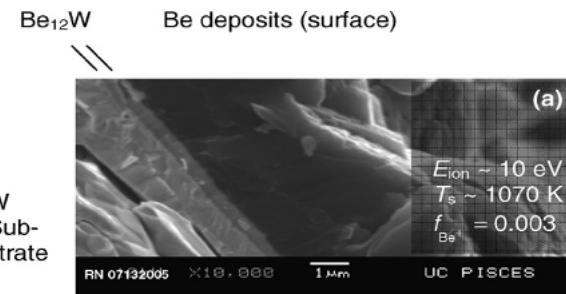
Ye, et al. J. Nucl. Mater. 313-316, 72-76 (2003)

Helium Fuzz Growth



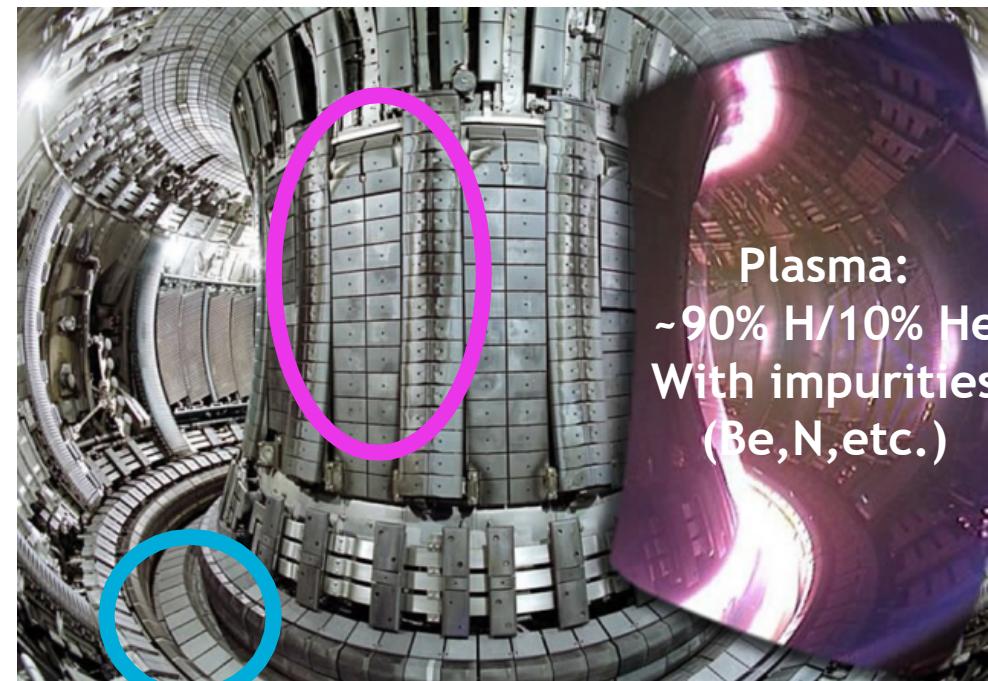
Kajita, et al. J. Nucl. Mater. 418, (2011) 152-158

W-Be Intermetallics



Baldwin, et. al. J. Nucl. Mater. 363-365 (2007) 1179-1183

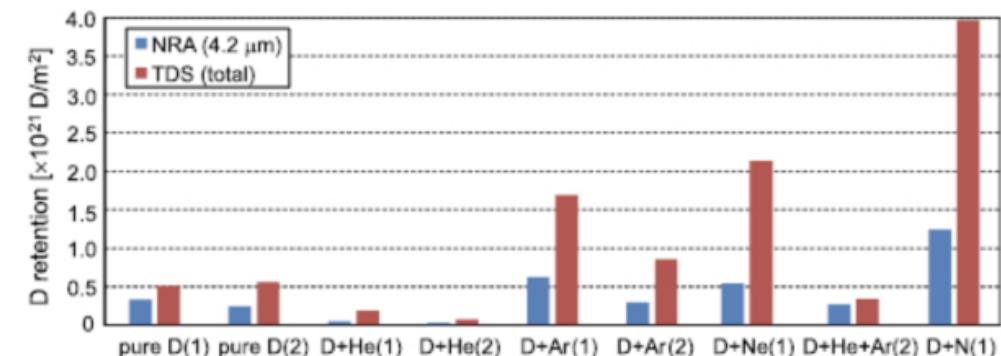
Beryllium First Wall



iter.org

Tungsten Divertor

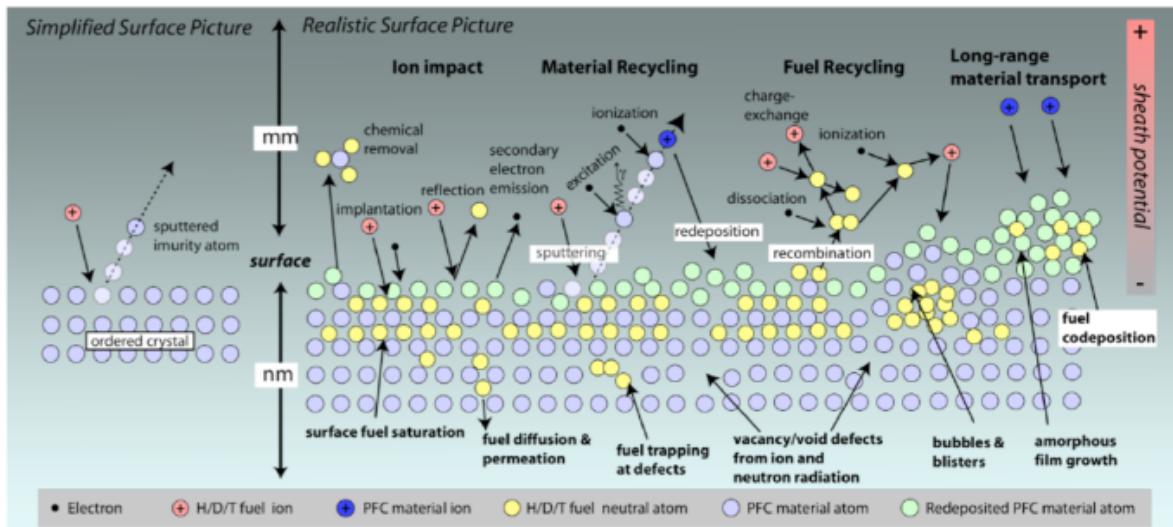
Effect of Plasma Impurities on Hydrogen Retention



Kreter, et al. Nucl. Fus.. 59, 086029 (2019)

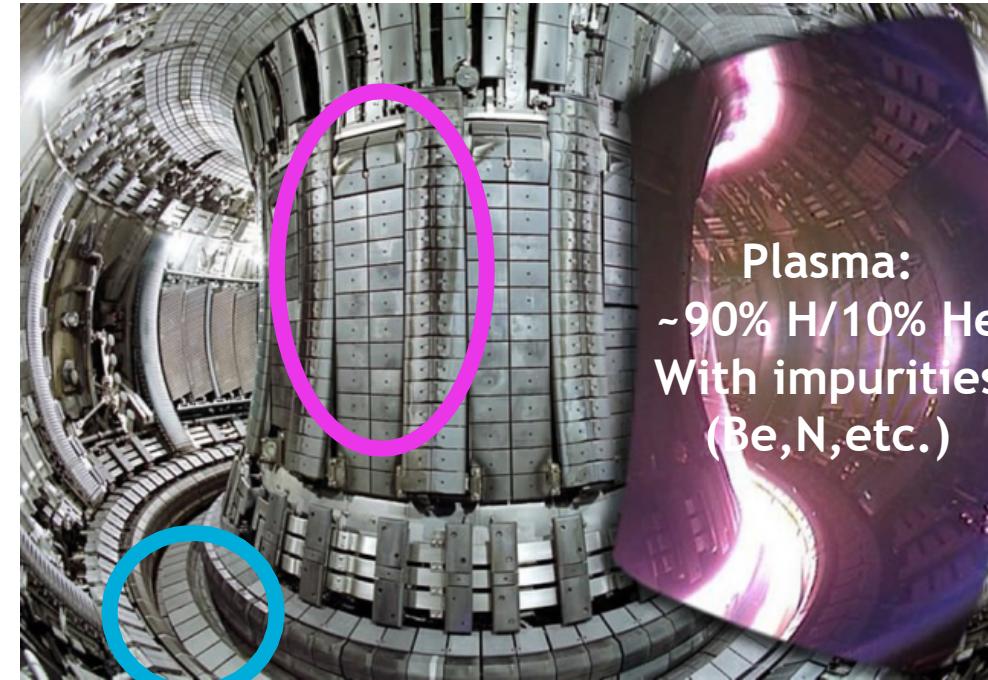
3 Materials for Fusion Energy

- Difficult to develop materials to handle extreme conditions within tokamak
- Large heat loads of $10\text{-}20 \text{ MW/m}^2$
- High particles fluxes of $\sim 10^{24} \text{ m}^{-2}\text{s}^{-1}$ of mixed ion species (H/He/Be/N etc.)



Wirth, et al. MRS Bulletin 36 (2011) 216-222

Beryllium First Wall



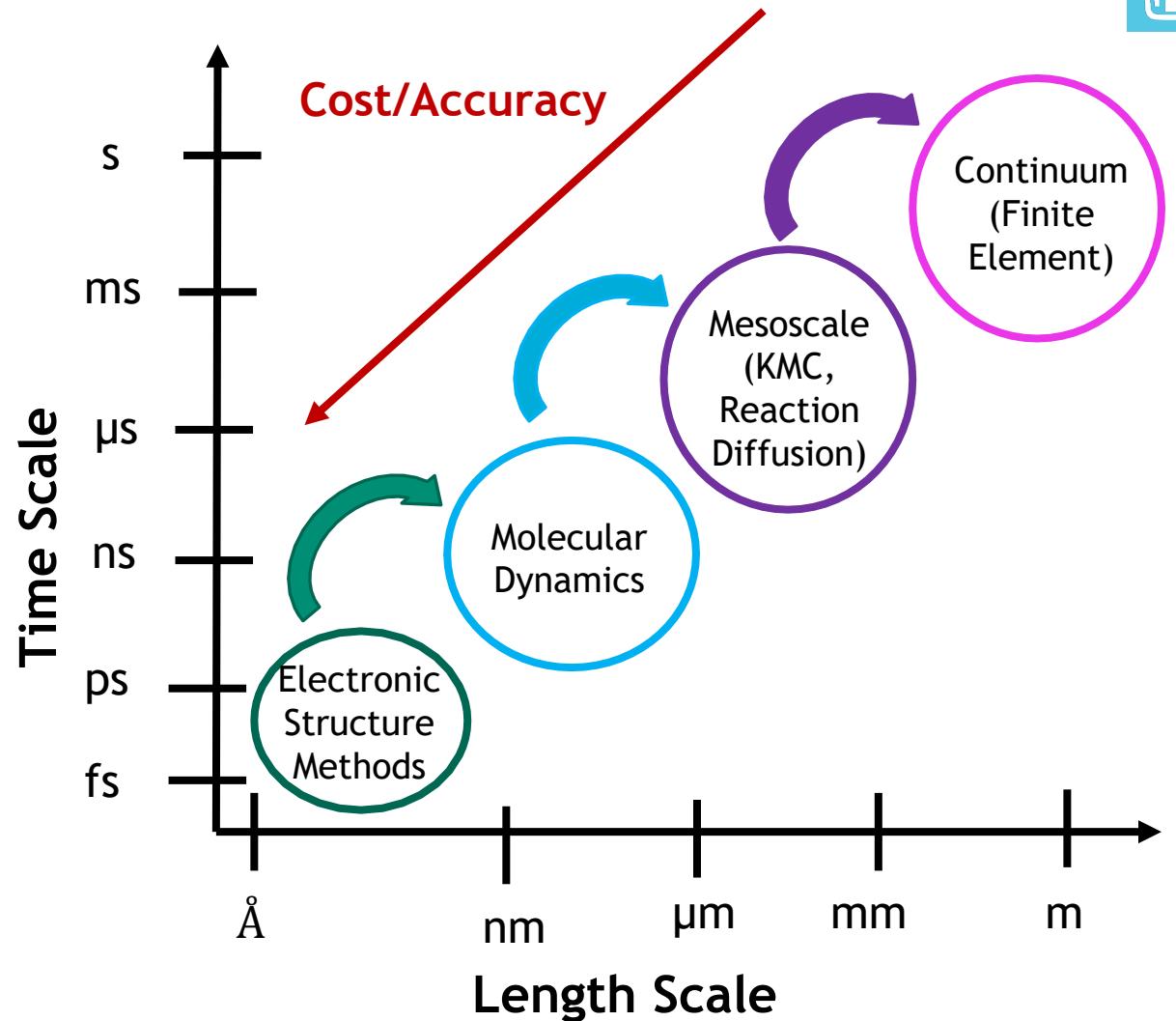
iter.org

Tungsten Divertor

- Many complex processes that occur at the plasma/material interface that can lead to material degradation

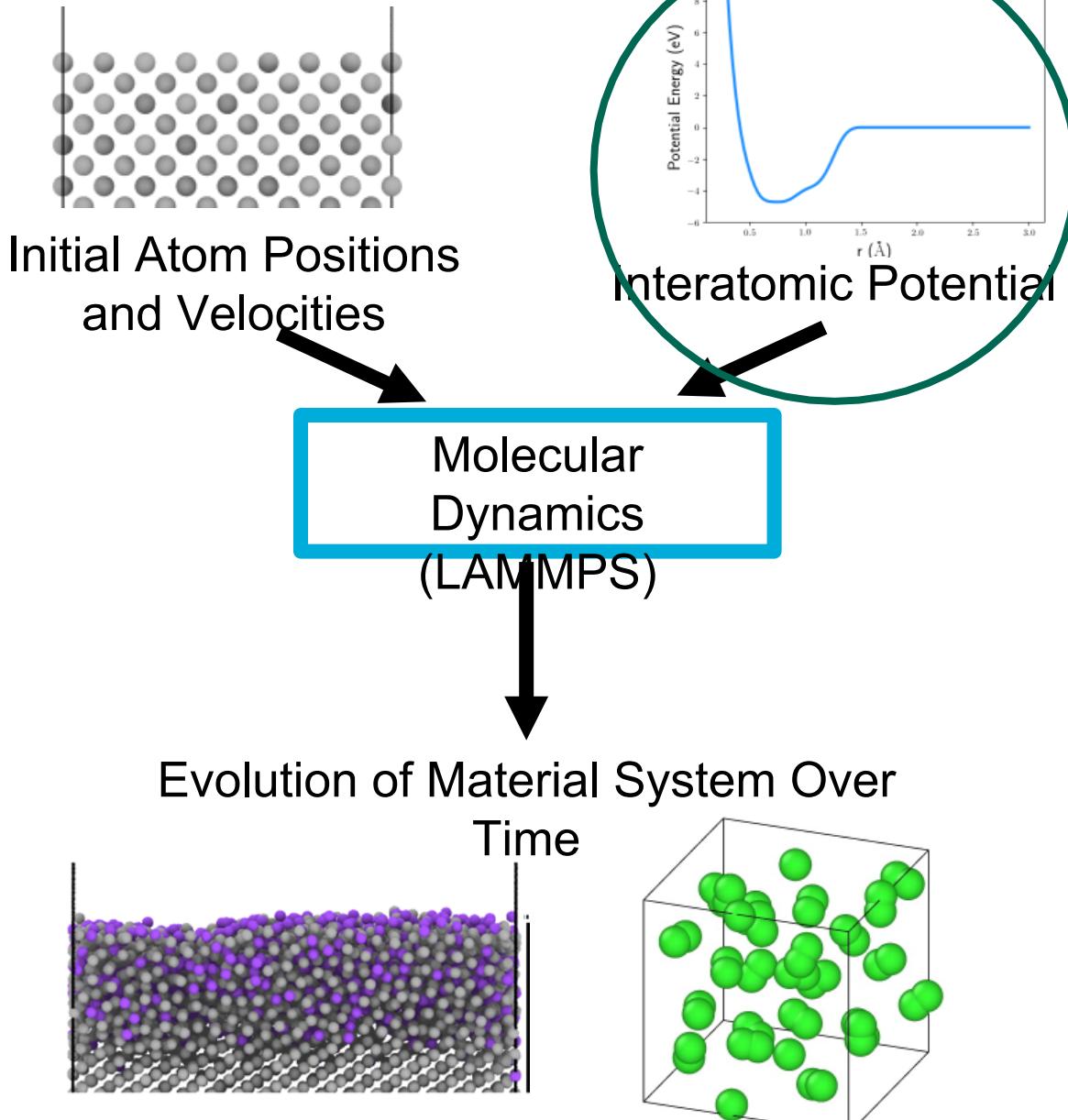
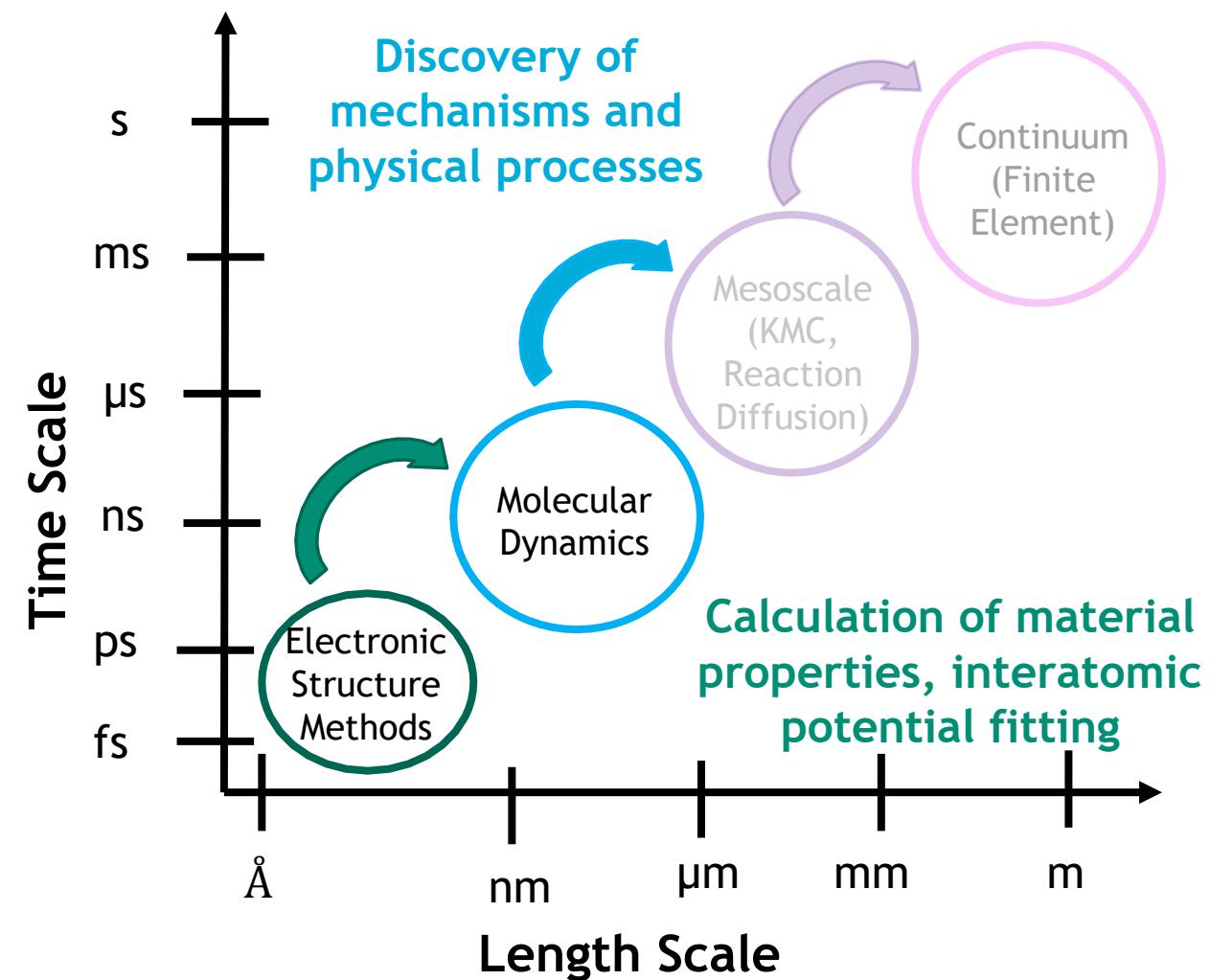
Multiscale Modeling of Materials

4



Each simulation technique can provide information to the next scale up

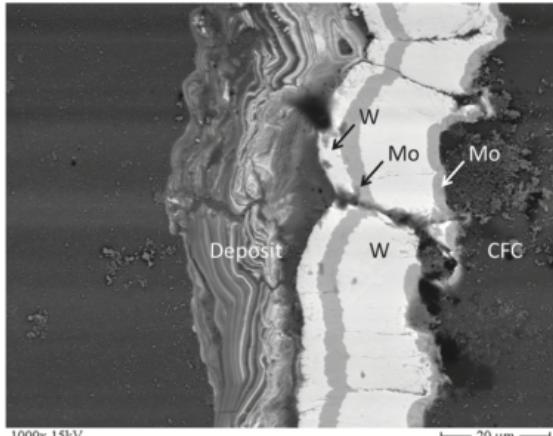
Multiscale Modeling of Materials



Each simulation technique can provide information to the next scale up

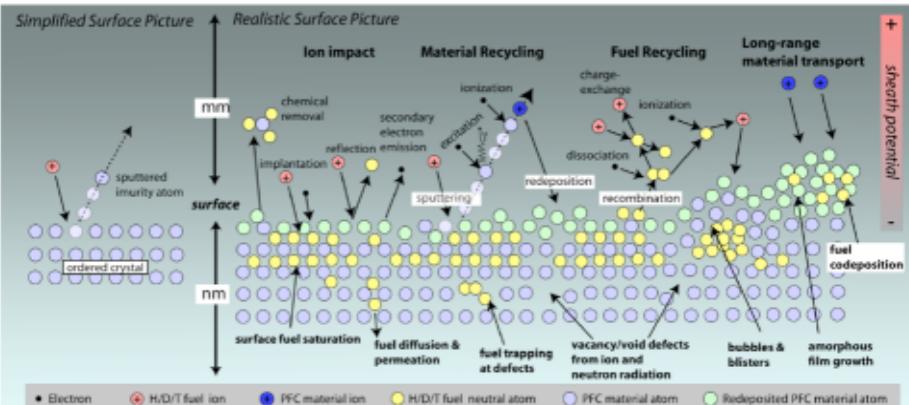
Why do we need ML-IAPs?

We want to model very complex physics at the plasma-material interface.



M Mayer et al 2016 *Phys. Scr.* 2016

014054



Electronic Structure Methods

- Highly accurate
- Can model a lot of relevant physics
- Very expensive, $O(N^3)$ scaling, ~100 atoms

Classical Potentials

- Lots of functional forms that are good for many different materials
- Scales well
- Accuracy highly dependent on potential and application
- Functional form limits type of physics that can be modeled

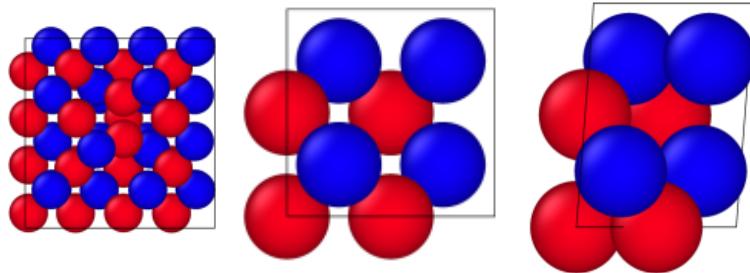
Machine Learned Interatomic Potentials

- Trained to electronic structure data for increased accuracy
- Flexible, not limited by inherent physics of model
- Quantum accuracy but MD scalability
- Need good training data for accurate model

What Makes a Machine Learned Interatomic Potential?

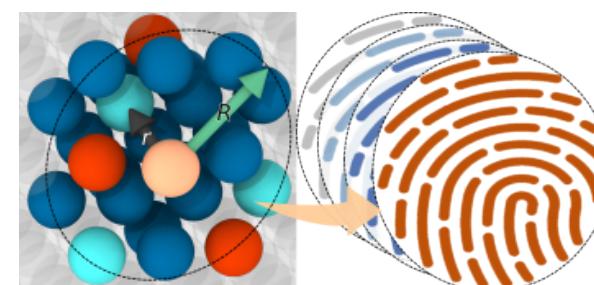
Training Data

- Generated using quantum methods
- Can include:
 - Energies
 - Forces
 - Stresses
- Variety of atomic configurations
 - Bulk structures, liquids, surfaces, defects, etc.



Descriptor

- Describes the local atomic environment
- Requirements
 - Rotation/Translation/. Permutation invariant
 - Equivariant forces
 - Smooth differentiable
 - Extensible
- Some Examples
 - Bispectrum, SOAP, ACE, Moment Tensors, etc.



Regression Method

- Linear regression
- Kernel ridge regression
- Gaussian process
- Non-linear optimization
- Neural Networks

SNAP

- Energies, forces, and stresses from DFT
- Bispectrum component descriptors
- Linear regression

SNAP Definition and Work Flow

Model Form

- Energy of atom i expressed as a basis expansion over K components of the bispectrum (B_k^i)

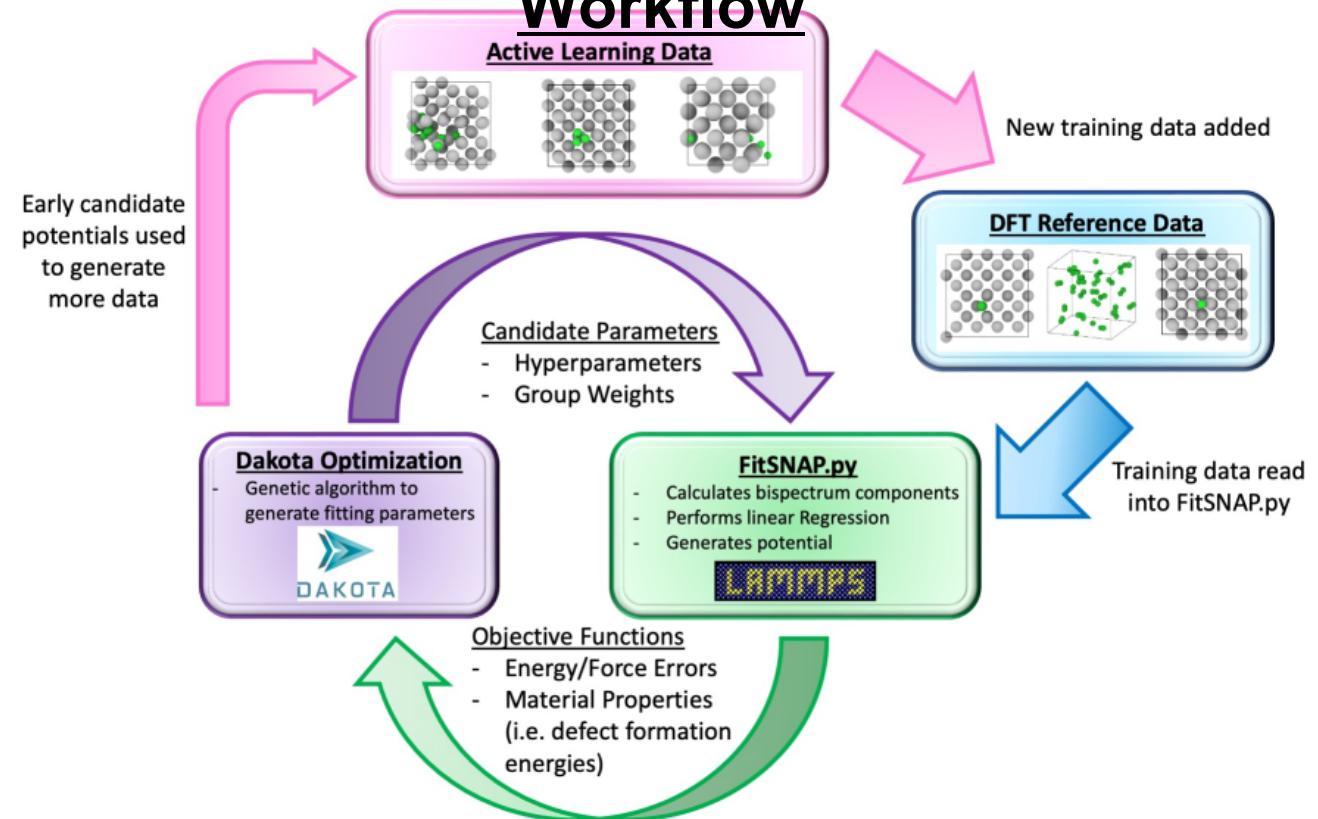
$$E_{SNAP}^i = \beta_0 + \sum_{k=1}^K \beta_k (B_k^i - B_{k0}^i)$$

Regression Method

- β vector fully describes a SNAP potential
- Decouples MD speed from training set size

$$\min(\|\mathbf{w} \cdot D\beta - T\|^2 - \gamma_n \|\beta\|^n)$$

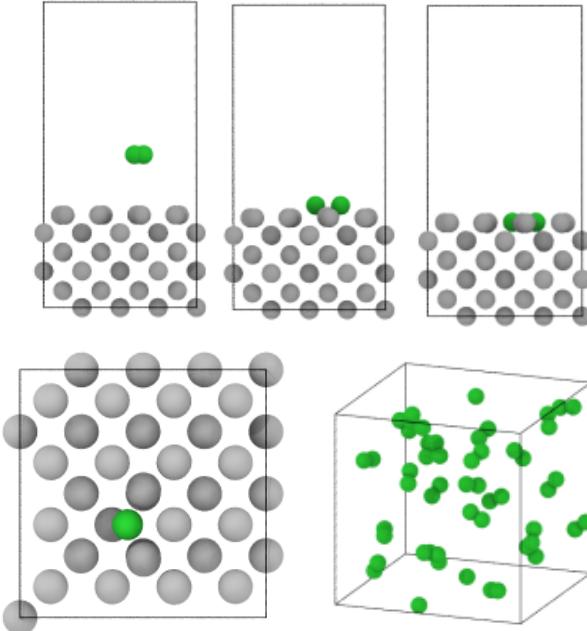
SNAP Development Workflow



Code available: <https://github.com/FitSNAP/FitSNAP>

9 SNAP Development for W-H

Training Data



Fitted Properties

- Energy/Force errors
- H defect formation energies
- H dimer/trimer binding curves

Defect Formation Energies

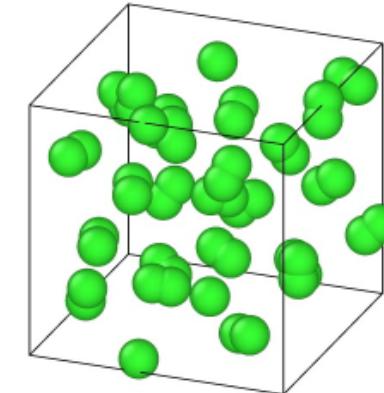
Bulk Defects	DFT (eV)	SNAP (eV)
E_f^{Tet} (eV)	0.88	0.91
E_f^{Oct} (eV)	1.26	1.24
E_f^{Sub} (eV)	4.08	4.42
E_f^{H2} (eV)	-4.74	-4.77

Adsorption Energies

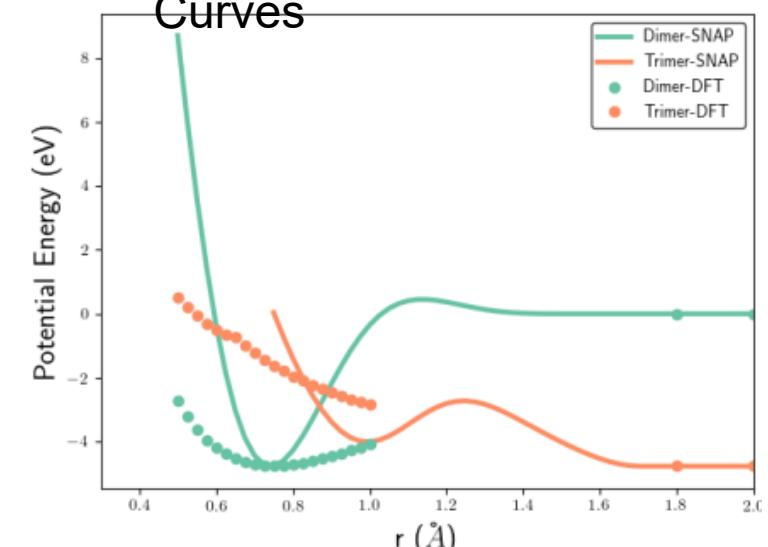
H Ads.	DFT (eV)	SNAP (eV)
(100) Ads. Site	Bridge	Bridge
(100) Ads. Energy	-0.96	-2.41
(100) H ₂ Ads. Energy	-0.80	-4.99
(110) Ads. Site	Hollow	Hollow
(110) Ads. Energy	-0.75	-2.64
(111) Ads. Site	Bridge	Hollow
(111) Ads. Energy	-0.59	-3.34

Initial Results

H₂ at 1000 K



Hydrogen Binding Curves



W: Grey H: Green N: Pink

SNP Development for W-N

10

Training



Fitted Properties

- Energy/Force errors
- N defect formation energies
- N adsorption energies
- N dimer/trimer binding curves
- W_xN_y cohesive energies

Defect Formation Energies

Bulk Defects	DFT (eV)	SNAP (eV)
	1.85	1.89
	1.11	1.09
	4.72	2.90
	-9.79	-9.47

Surface Adsorption

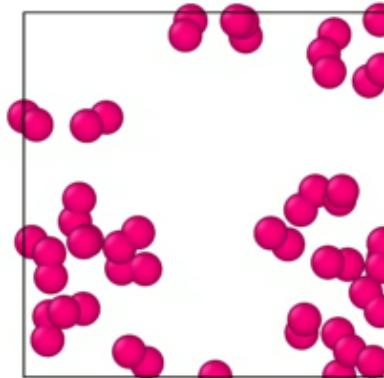
	DFT (eV)	SNAP (eV)
(100) Ads. Site	Hollow	Hollow
(100) Ads. Energy	-3.52	-4.33
(110) Ads. Site	Hollow	Hollow
(110) Ads. Energy	-3.59	-2.97

W_xN_y Formation

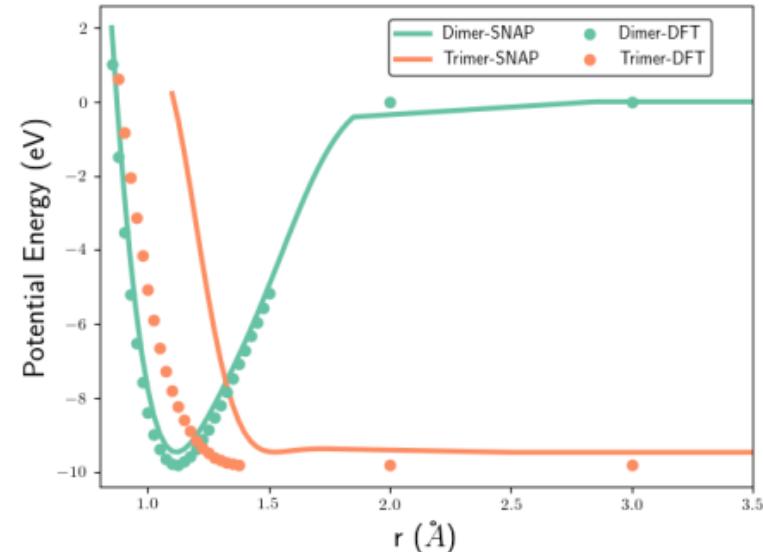
	DFT (eV)	SNAP (eV)
WN_2^- P62mmc	-1.82	-1.82
WN_2^- P6m2	-0.91	-1.75
WN - NiAs	-0.84	-0.74
WN - WC	-0.23	-1.51
W_2N	-0.03	3.29

Initial Results

N_2 at 1000 K



Nitrogen Binding

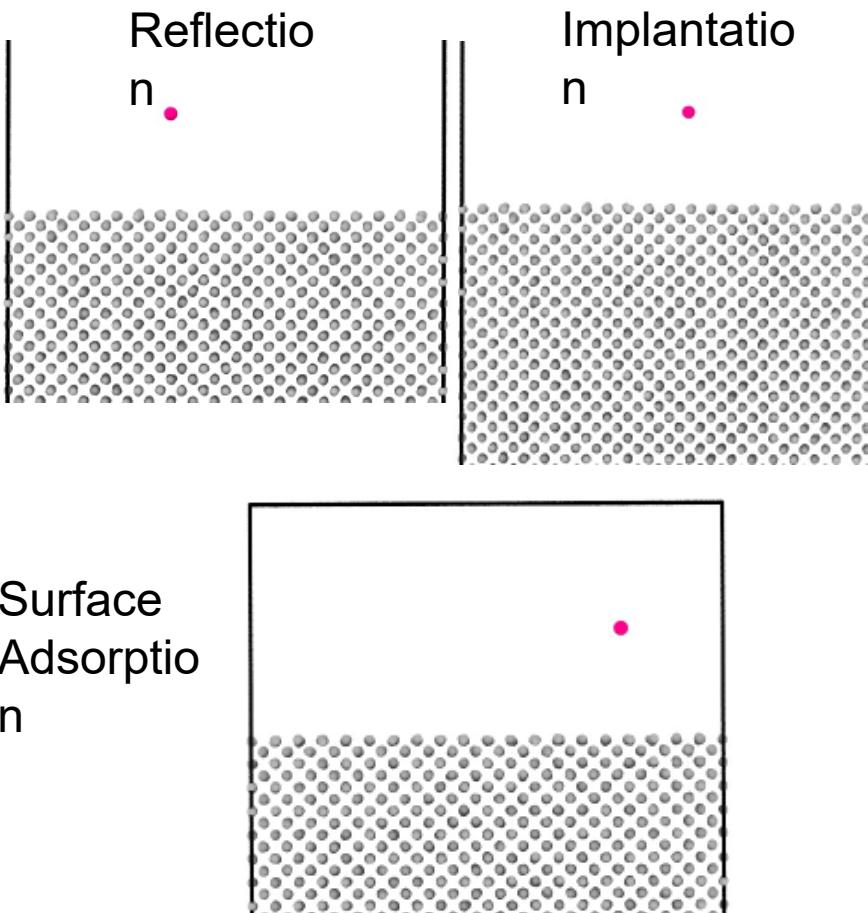
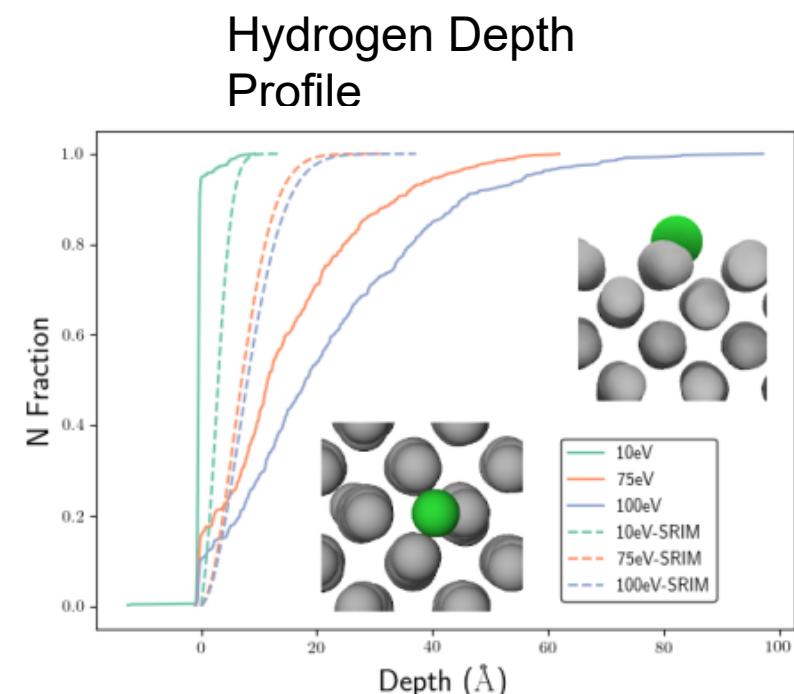
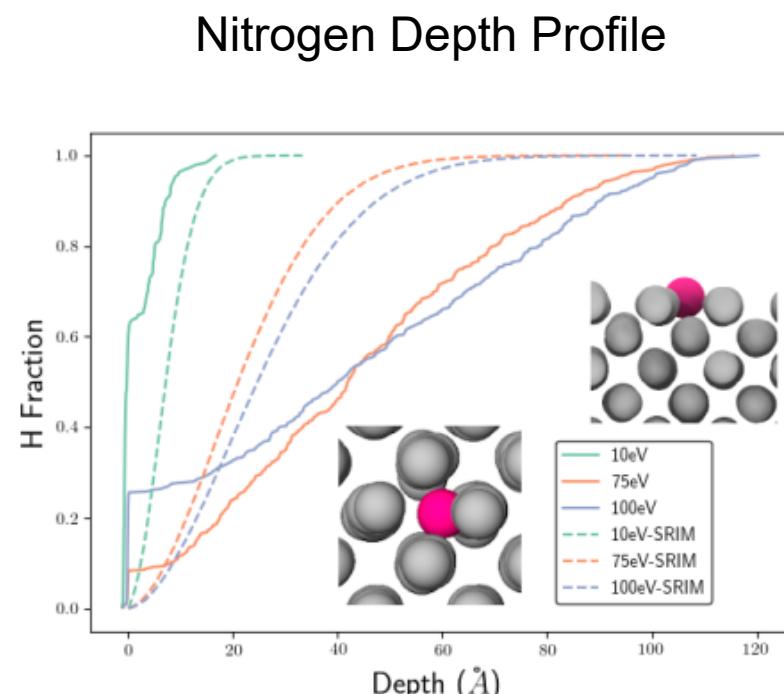


W: Grey H: Green N: Pink

Single Ion Implantations in Tungsten

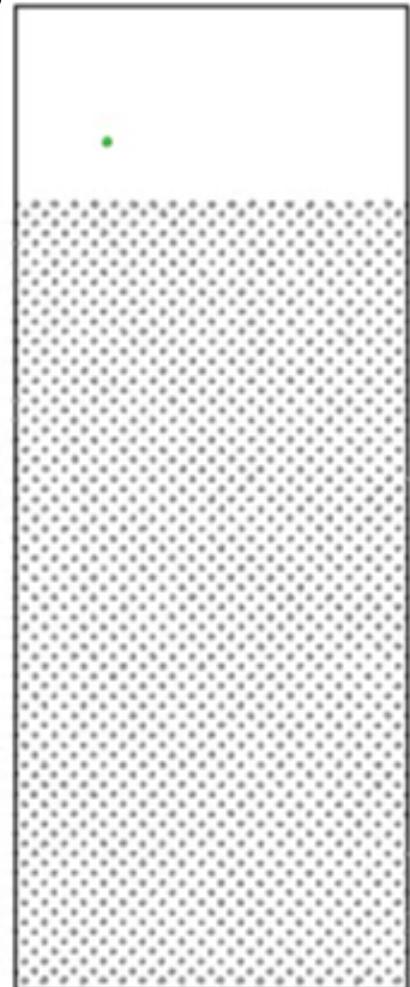
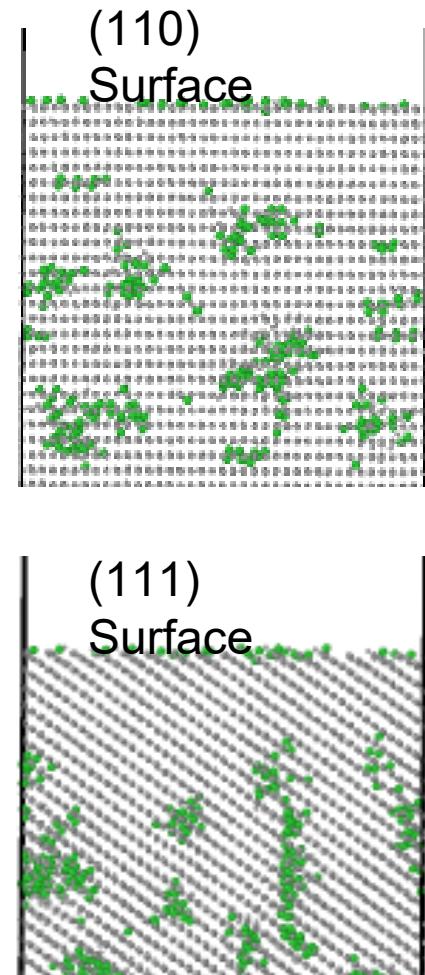
Single ion implantations to assess depth profile

- 10 eV, 75 eV, and 100 eV hydrogen or nitrogen for 1,000 separate implantations
- 1000 K for (100) tungsten surface
- Simulations performed for 2 ps and depth is recorded

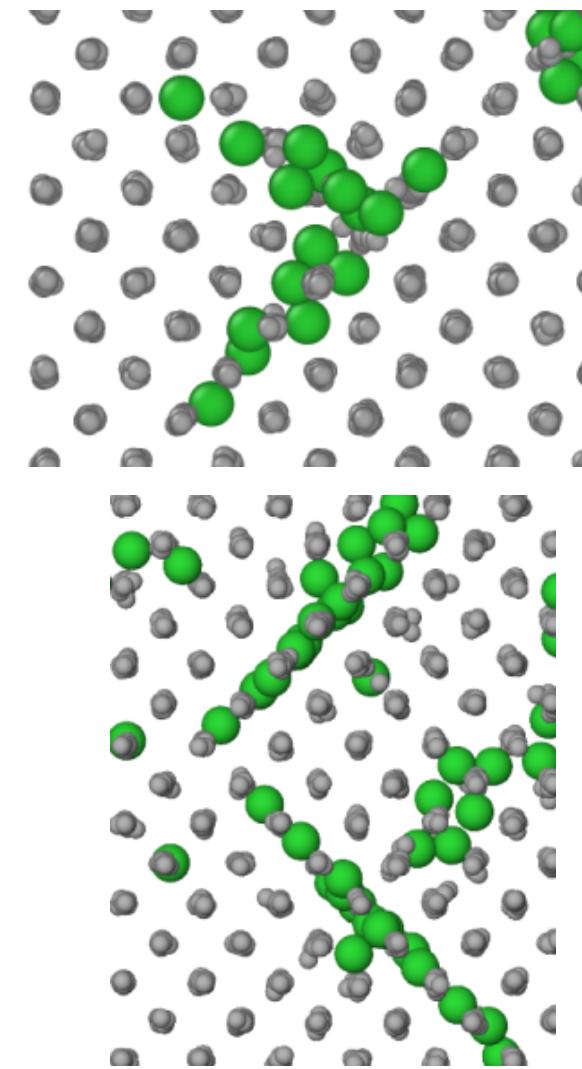


Cumulative Implantation Simulations - Hydrogen

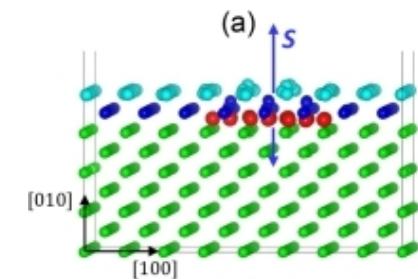
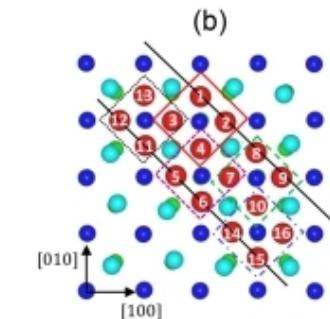
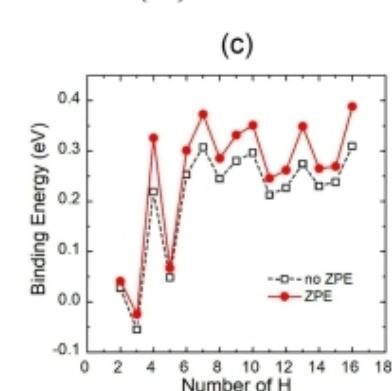
Hydrogen onto (100)
Tungsten



Formation of 2D Hydrogen Platelets

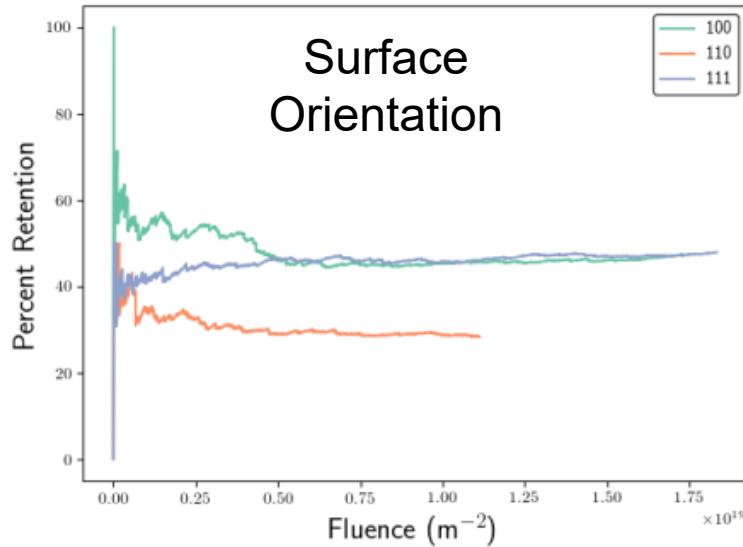
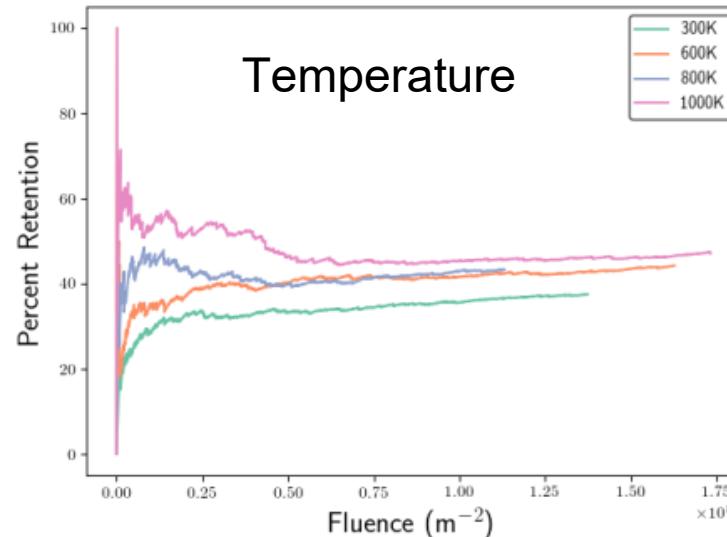
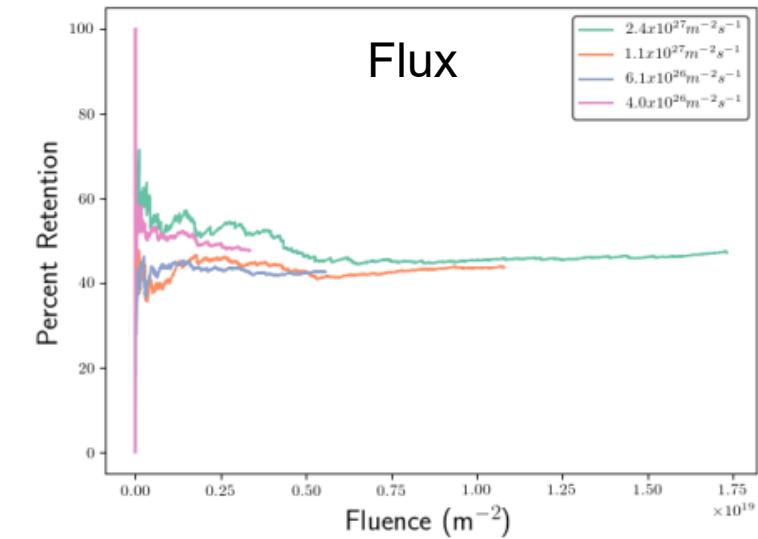


2D Hydrogen Clusters
Predicted by DFT

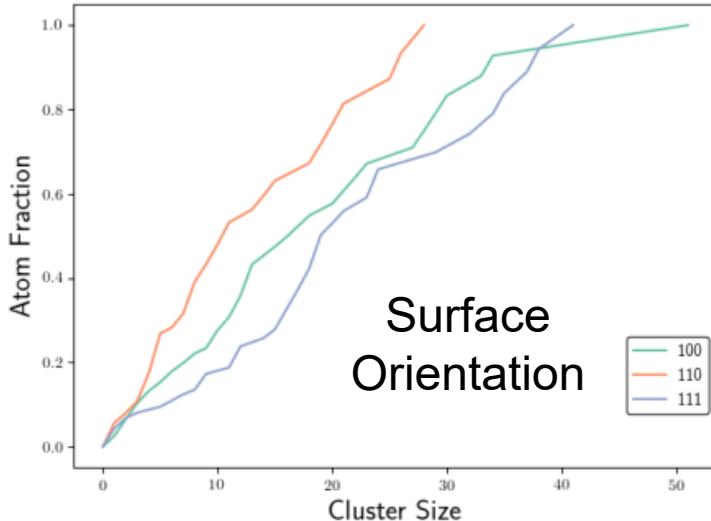
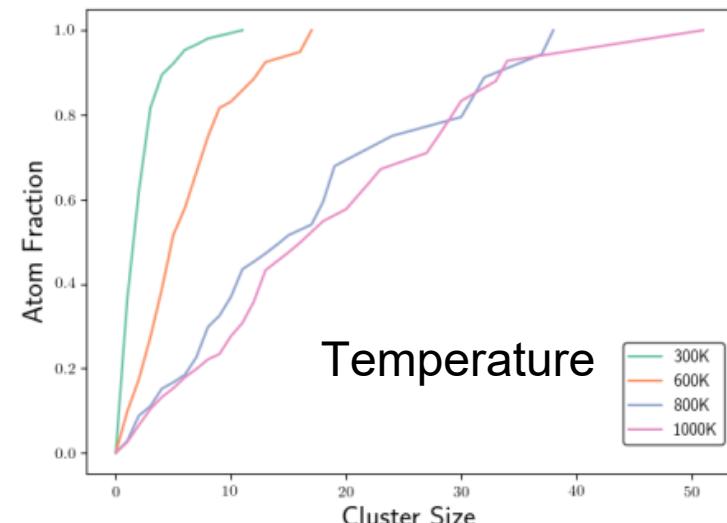
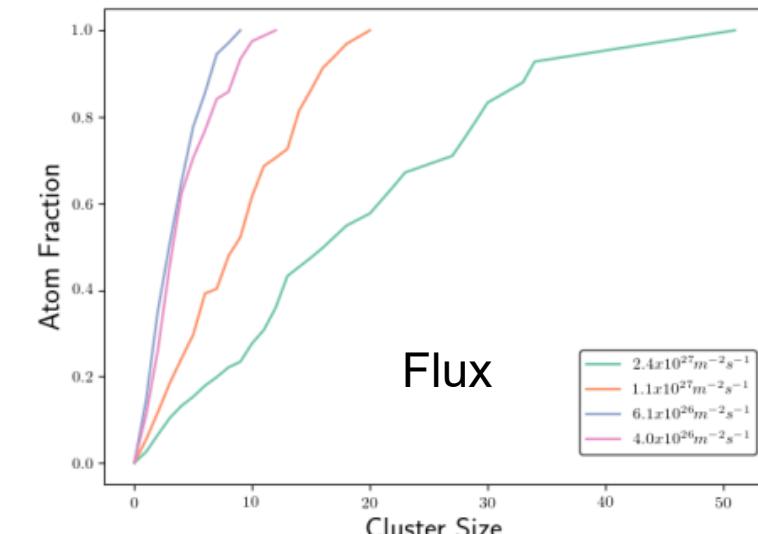


Hydrogen Retention in Tungsten

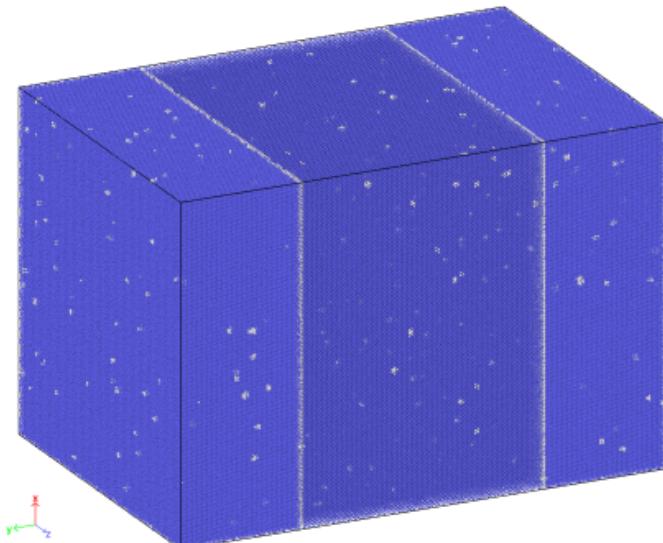
Hydrogen Retention



Cluster Distributions

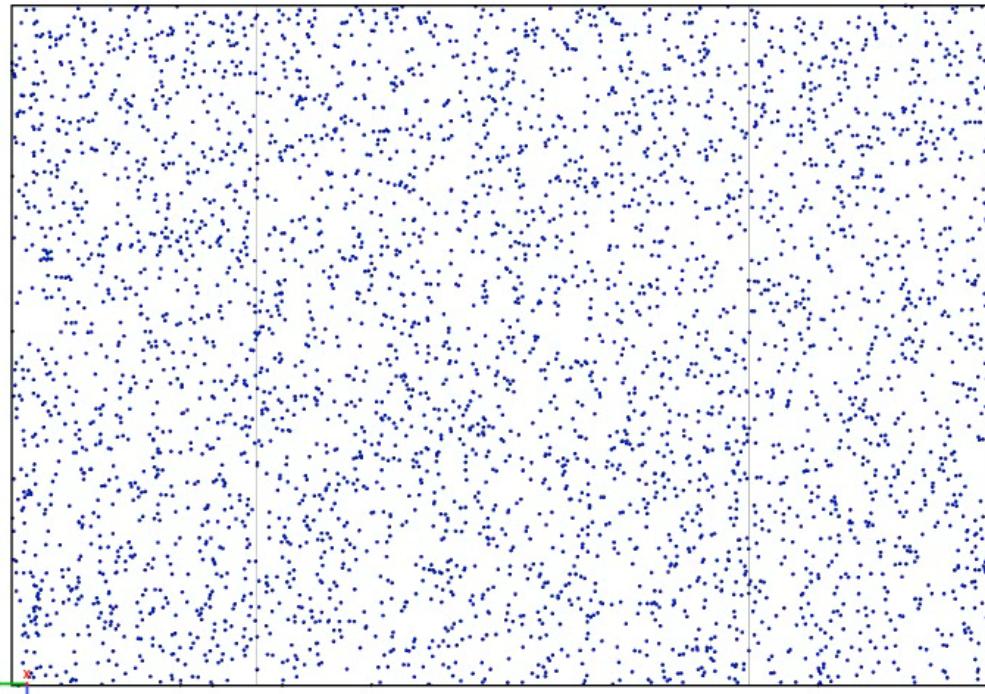
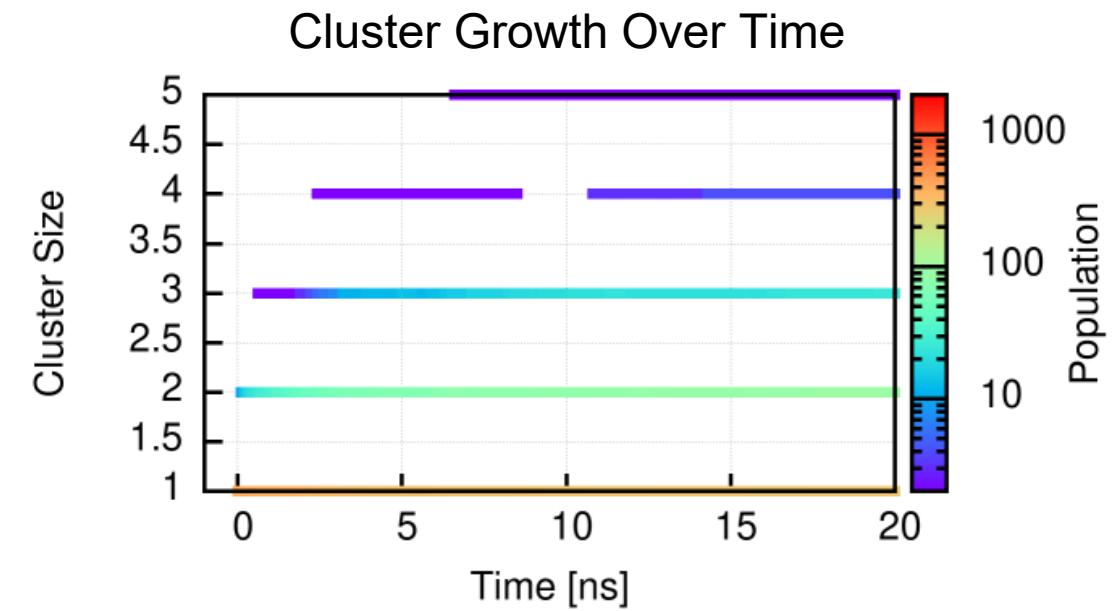
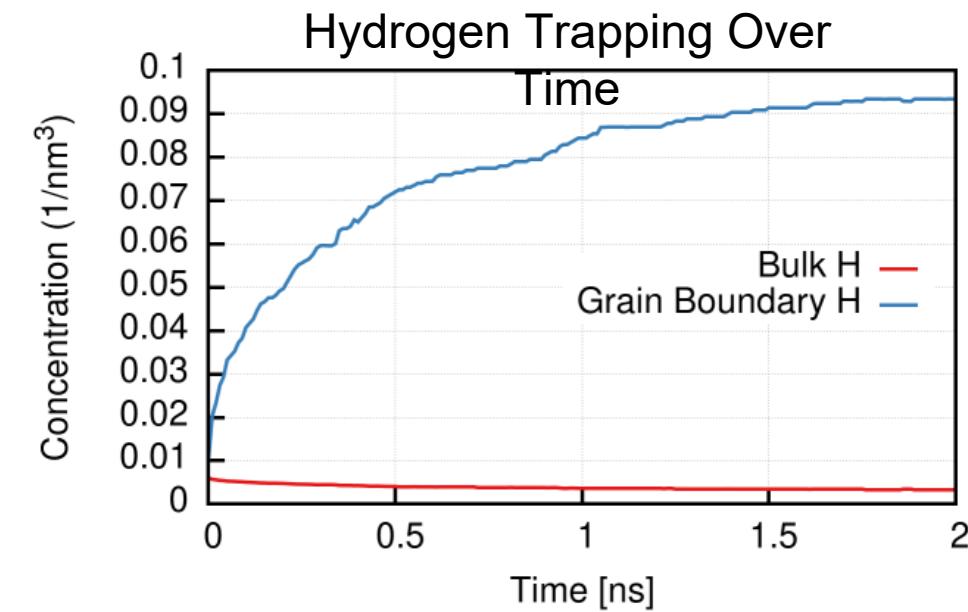


Large-Scale Simulations of Hydrogen Trapping At Grain



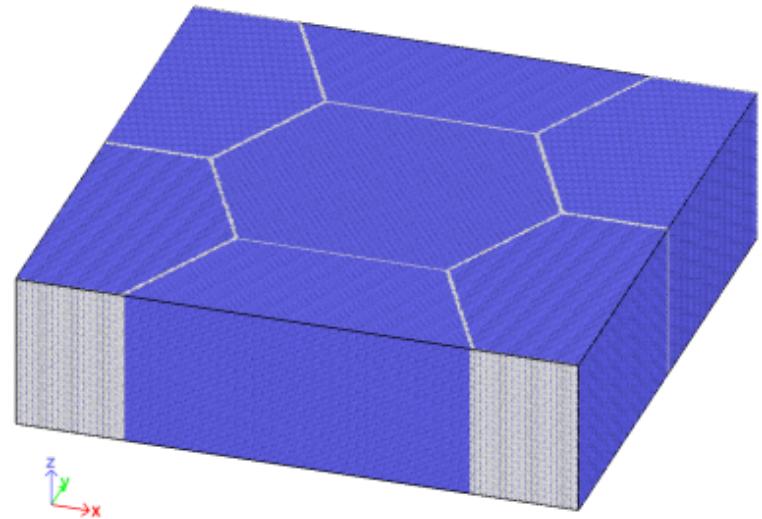
Modeling 0.01% H
concentration in twin
grain boundary

4 ns of
hydrogen
diffusion



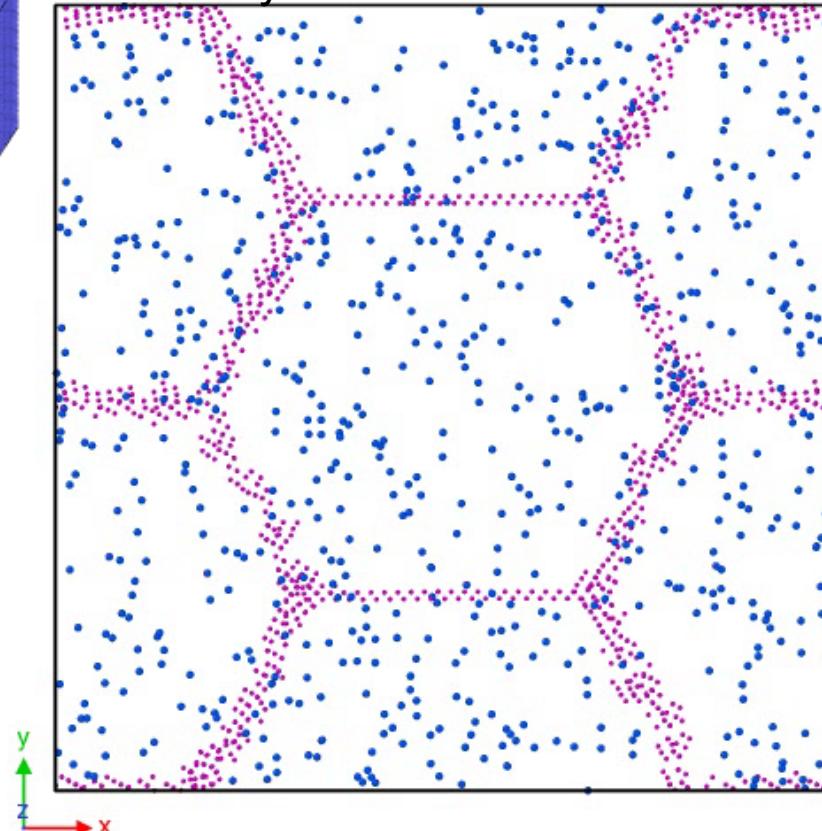
Large-Scale Simulations of Hydrogen Trapping At Grain Boundaries

Polycrystalline Tungsten

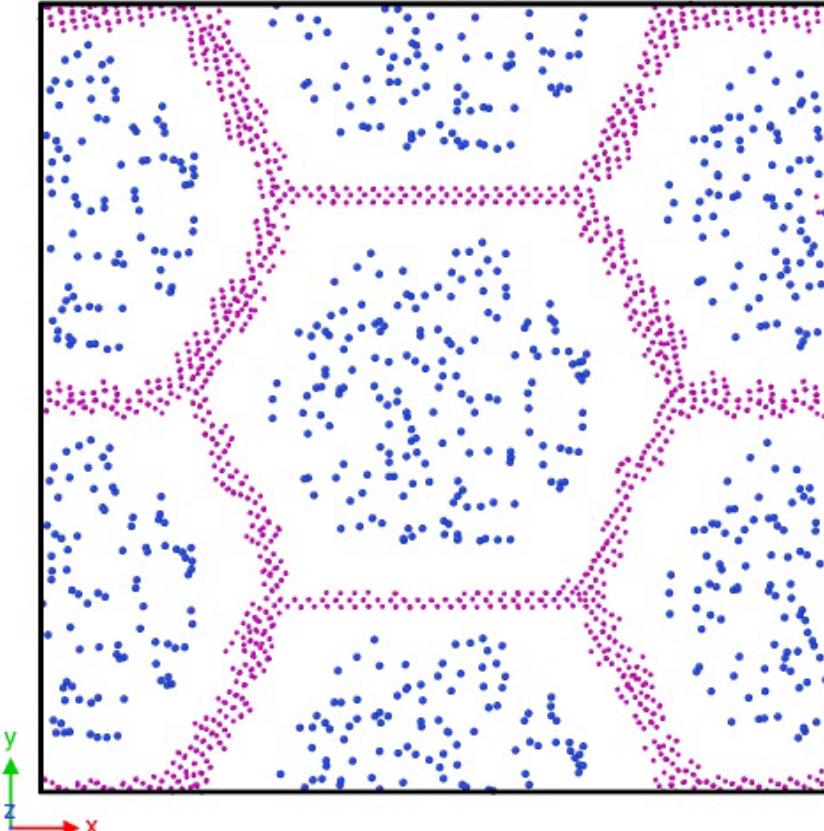


Competitions of hydrogen trapping at the GB or in bulk?

Hydrogen Seeded Everywhere

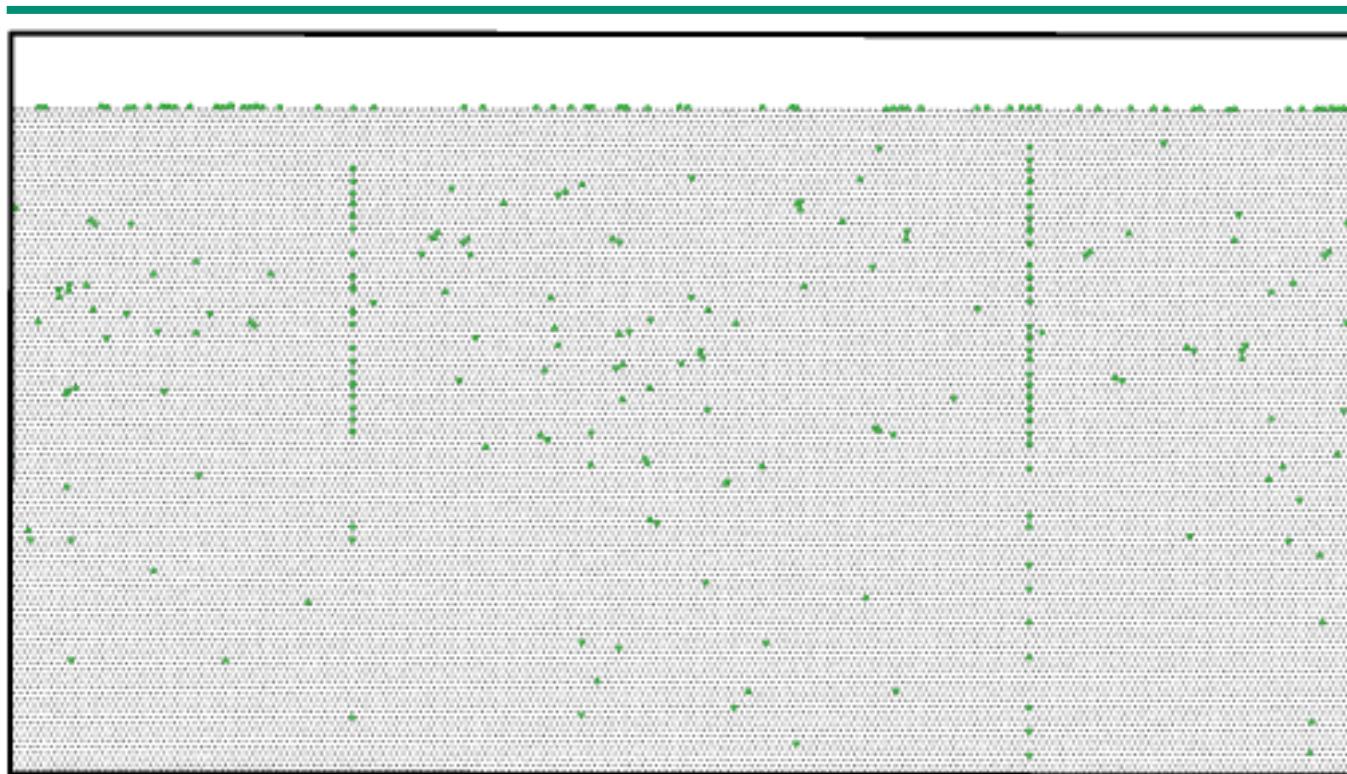


Hydrogen Seeded in Grain



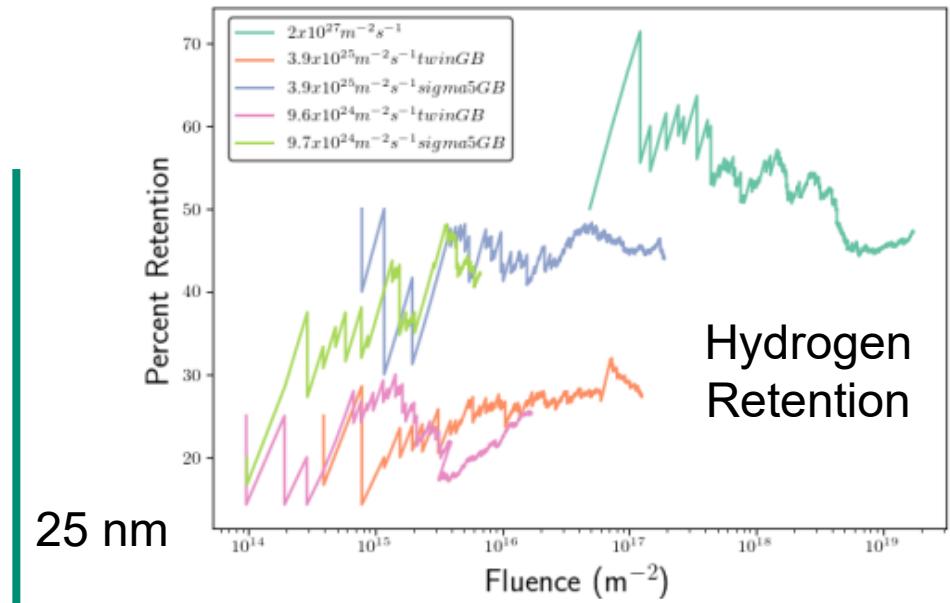
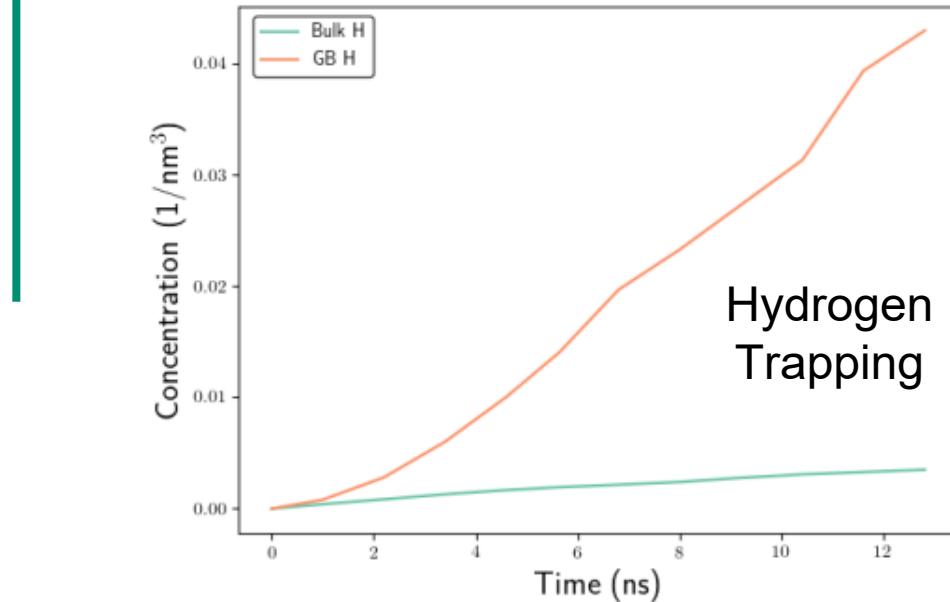
Large-Scale Simulations of Hydrogen Trapping At Grain Boundaries

Hydrogen Implantation in Twin GB at
12 ns 50 nm



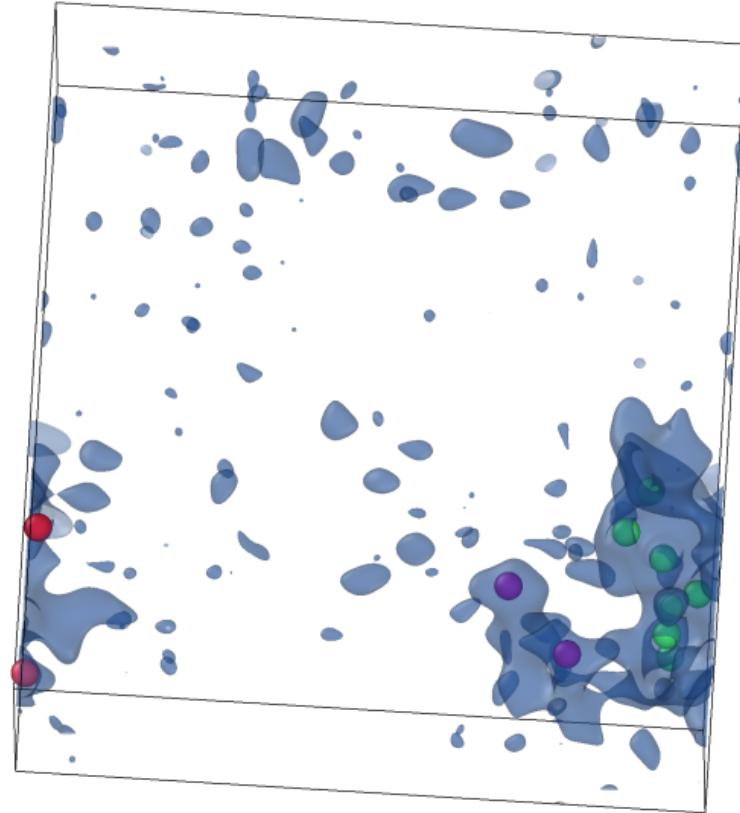
Twin Grain
Boundary

W: Grey H: Green



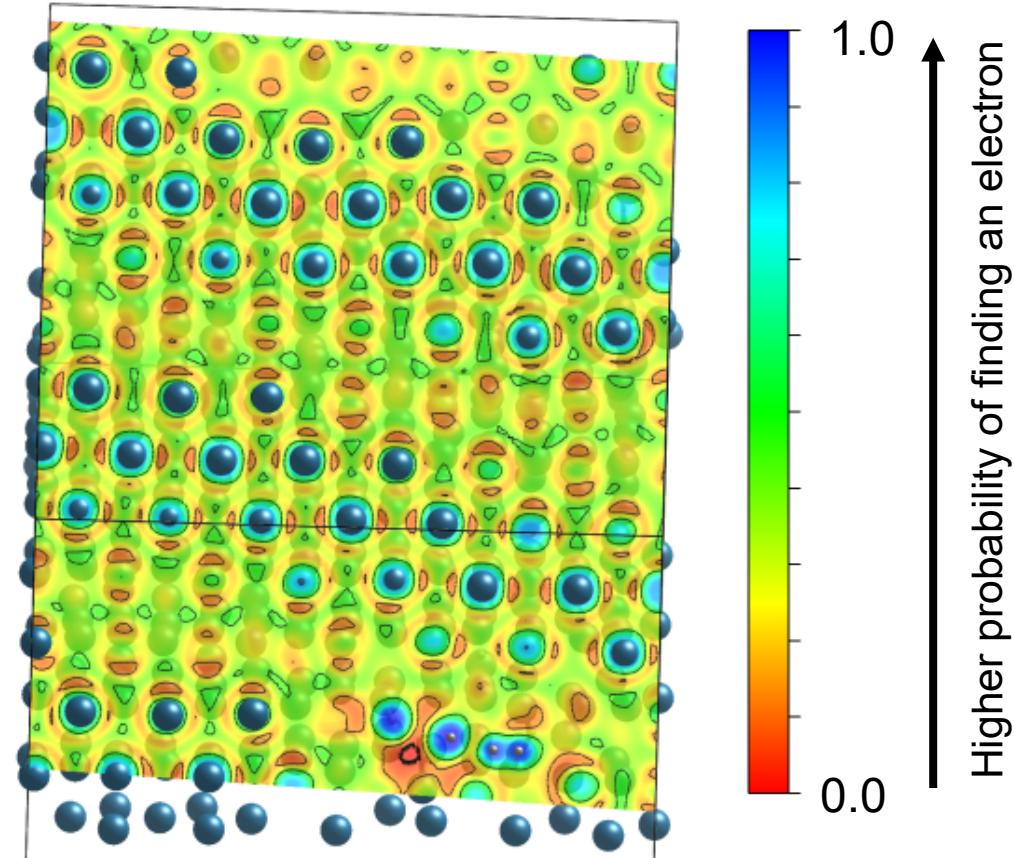
Does DFT Support Platelet Formation?

Partial Charge Distribution -5 to E_F
(energy resolved electron visualization)



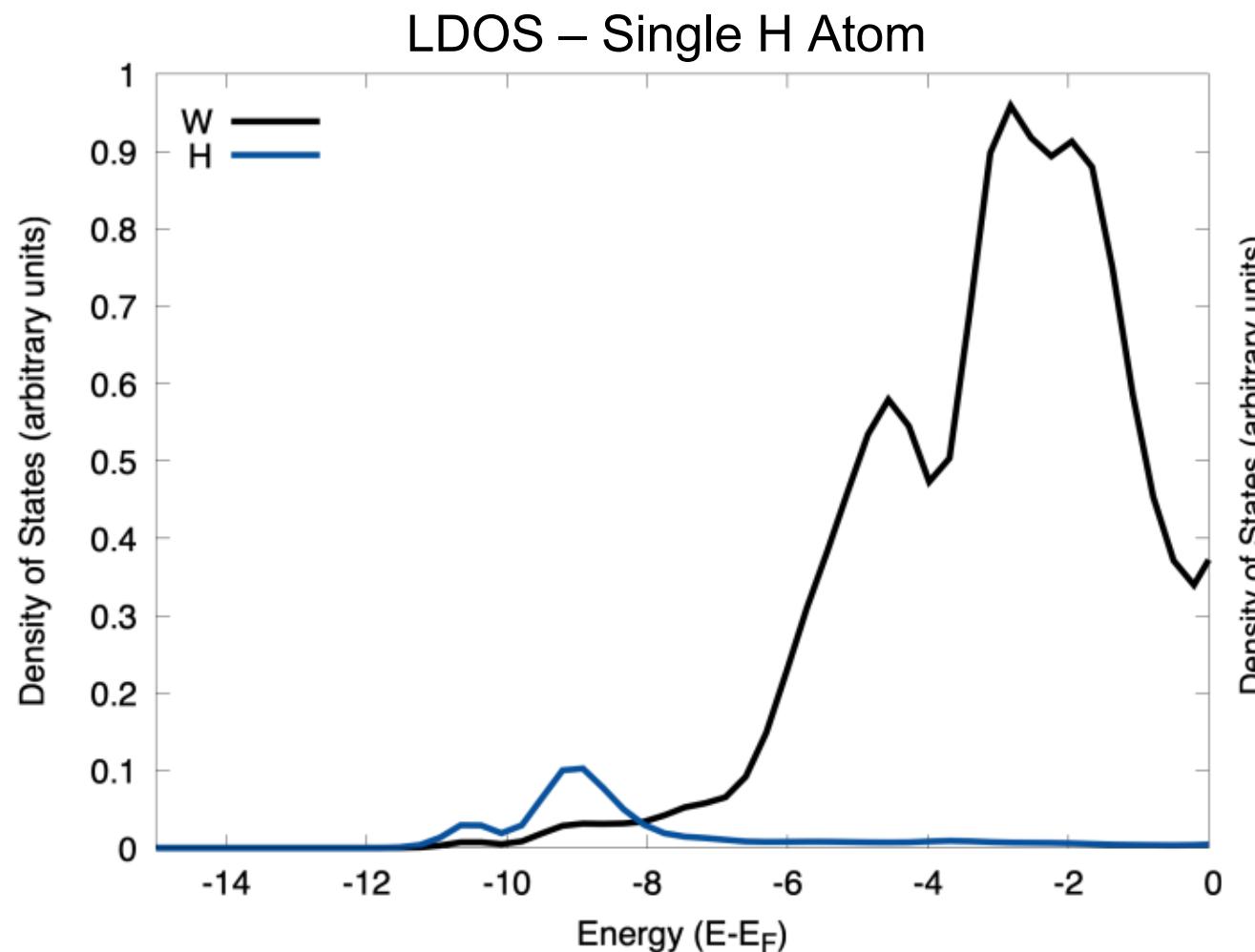
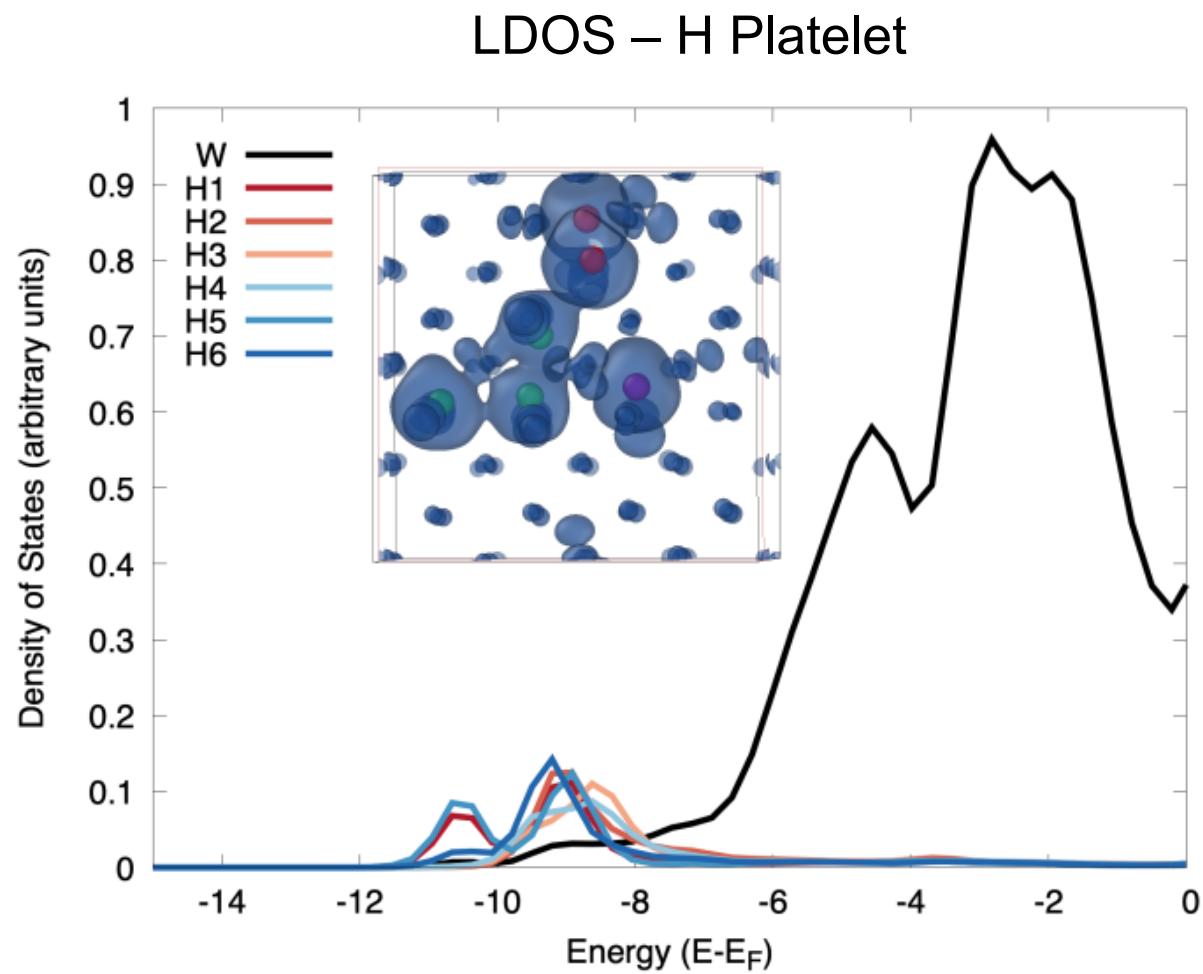
7x7x7 W supercell with 11H; 123 fs

Electron Localization Function
(visualization of **all calculated electrons**)



Hydrogen atoms can share there electrons out to at
least 4.2 Å

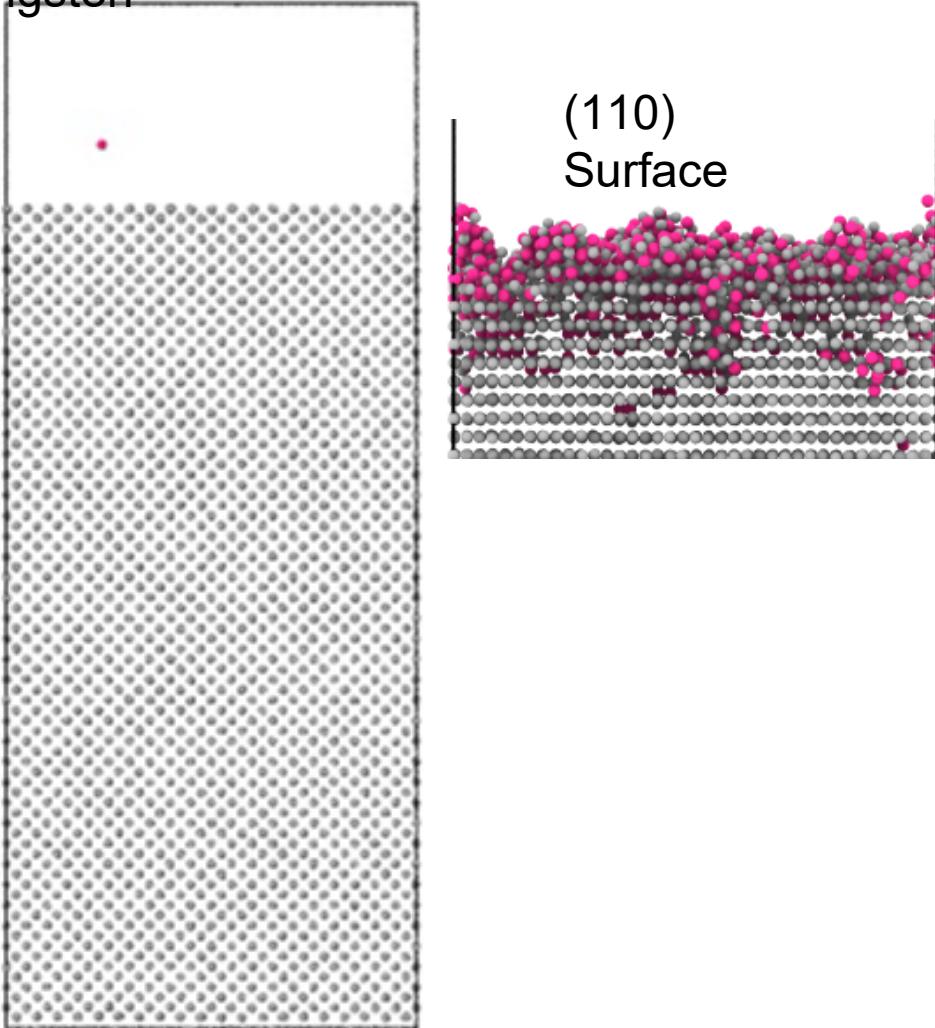
Does DFT Support Platelet Formation?



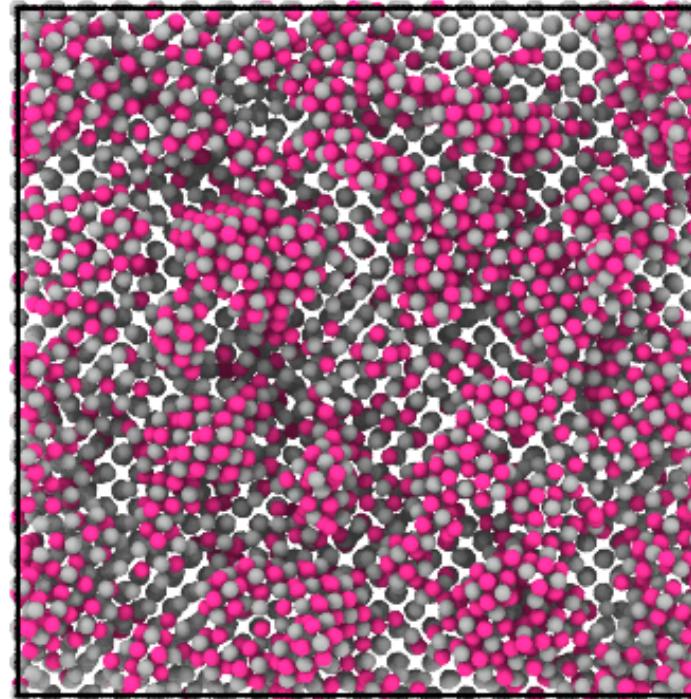
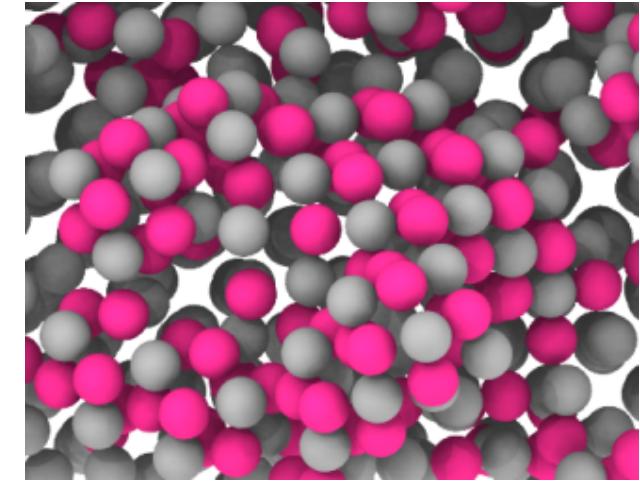
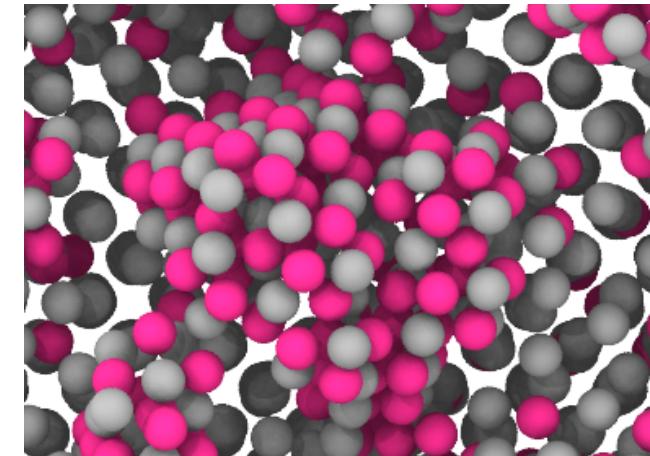
Additional hydrogen atoms continue to accumulate electrons in region near platelet

Implantation simulations

Nitrogen onto (100)
Tungsten



Ordered Structures Emerging on
Surface



Near-Surface Tungsten Nitride Growth

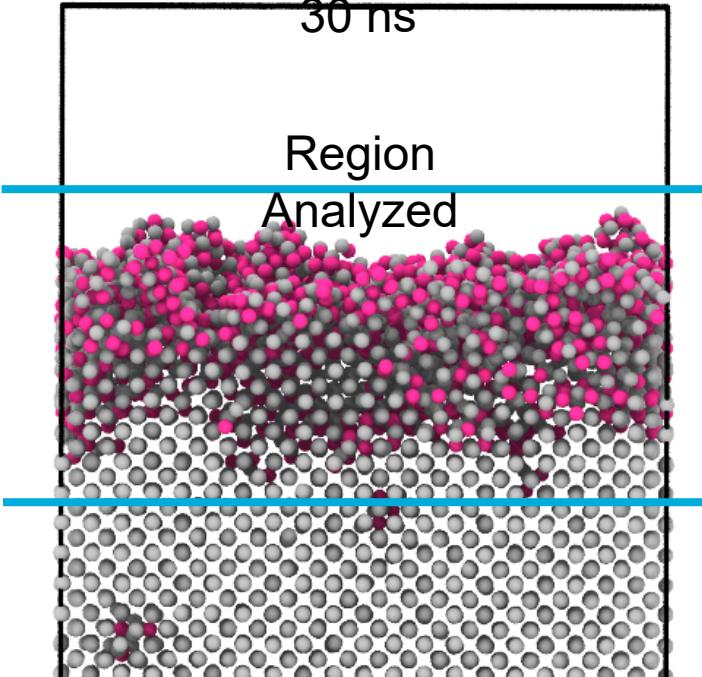
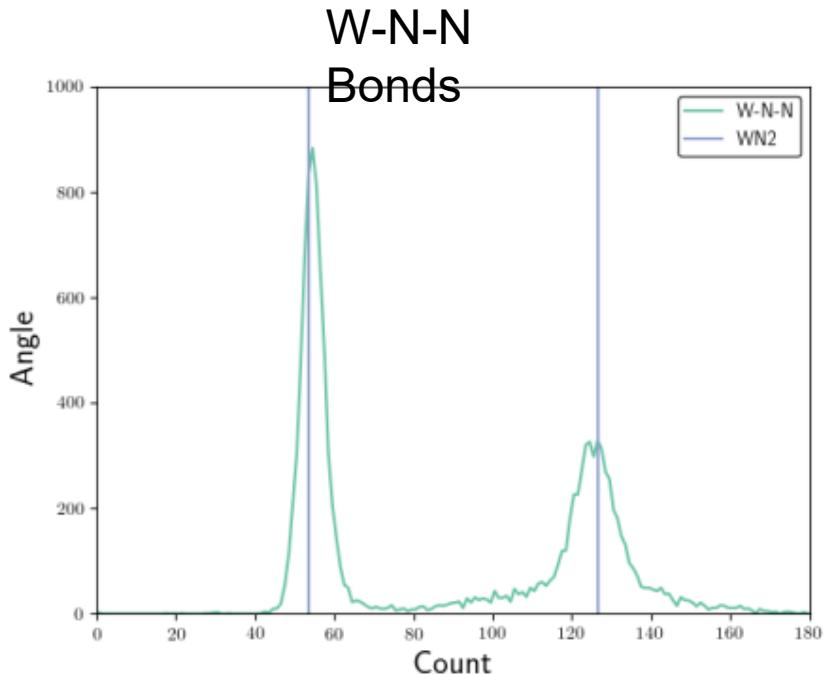
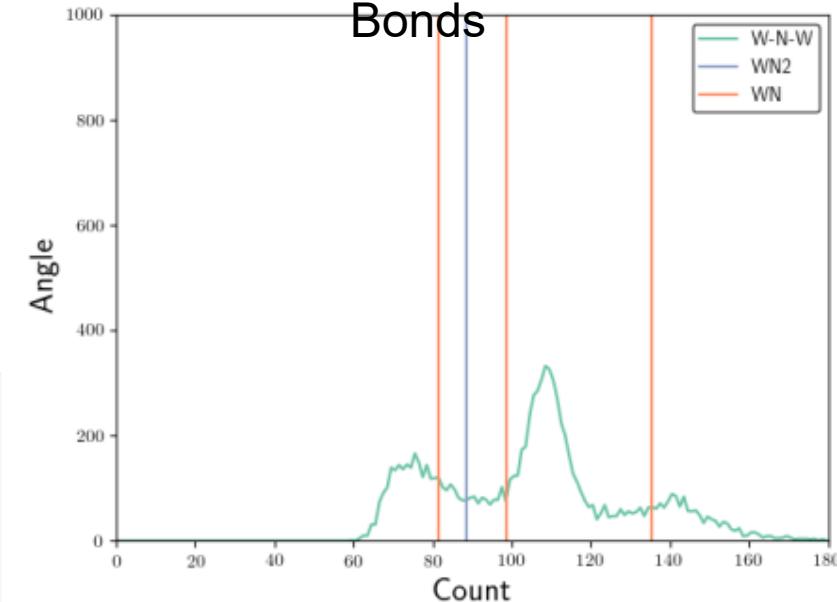
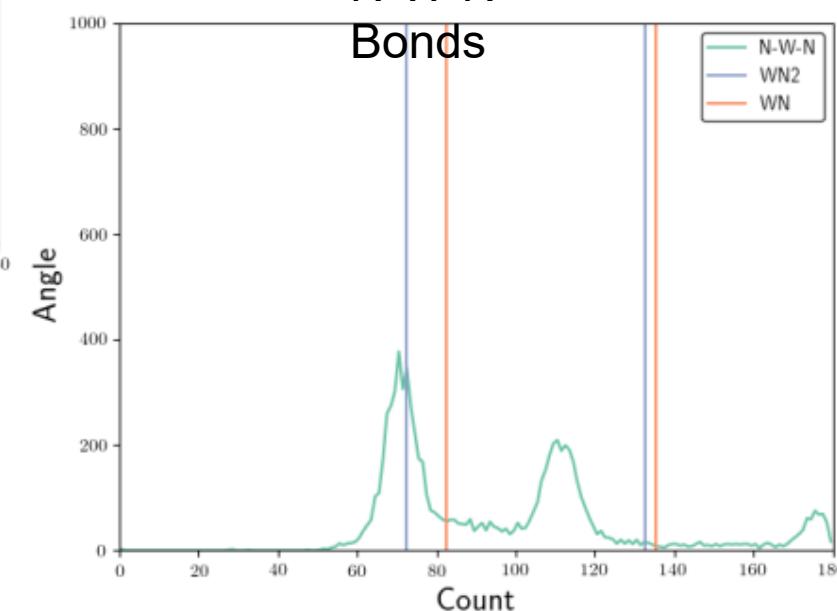
W: Grey N: Pink

W-N-W
Bonds

N
Implantation
(100) Surface

30 ns

Region
Analyzed

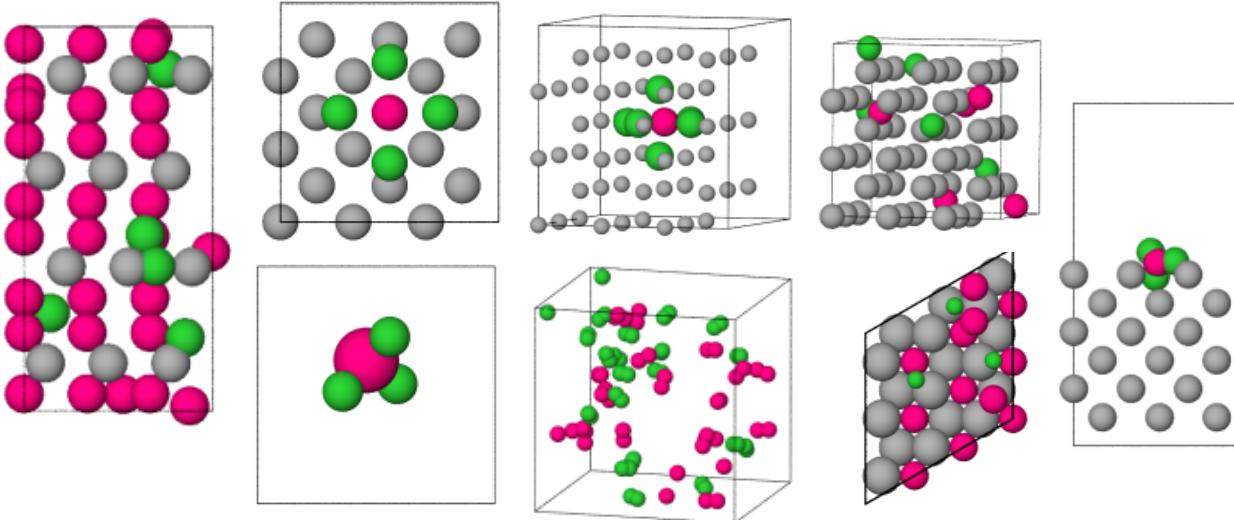


- Bond angle analysis to determine structure in near-surface region
- Analyzed from depth of 10 Å and above

Future SNAP Work: W-Be-H and W-N-H

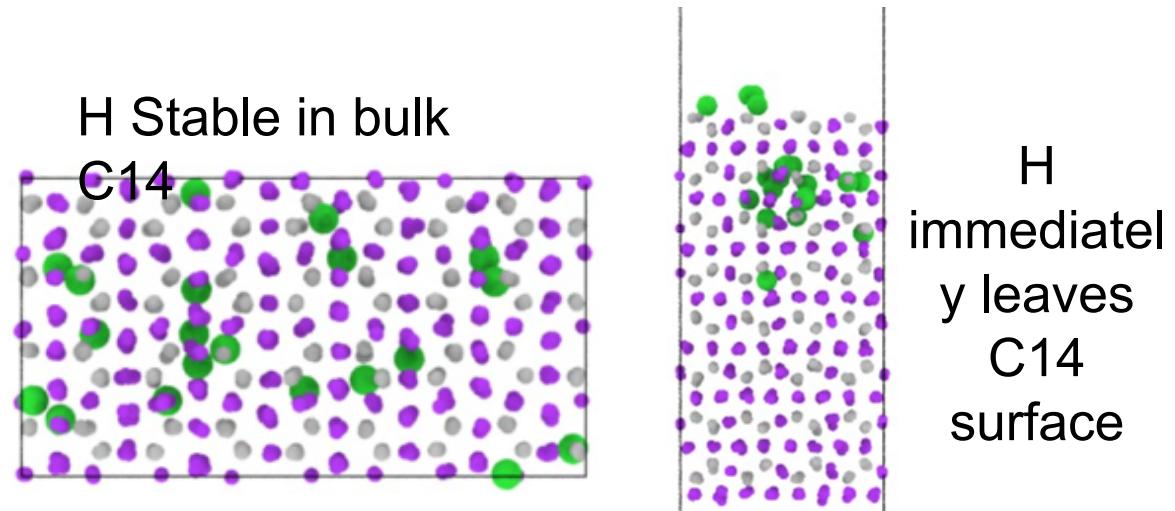
W-N-H SNAP

- Interest in studying hydrogen trapping in tungsten nitrides and potential ammonia formation on the surface
- Currently generating training data for W-N-H
 - H/N on surfaces and in bulk, ammonia, ordered and DFT-MD structures
- Focus on H-N surface interactions

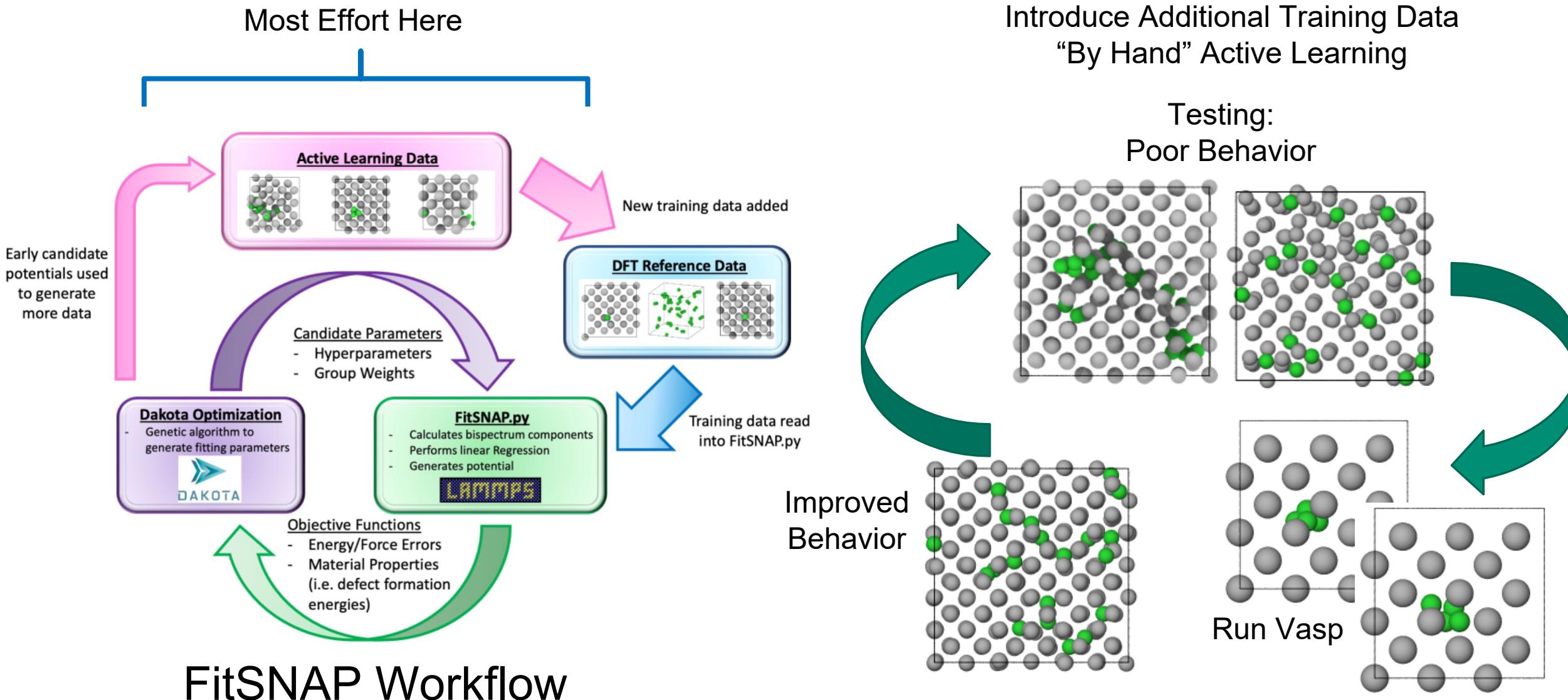


W-Be-H SNAP

- Expand previous W-Be SNAP potential to include hydrogen
- Initial training data and fits have been performed
- Initial potentials are stable, especially in bulk, but H surface behavior is poor i.e. H quickly evacuates Be surfaces
- Generated new training data based on performance of earlier potentials

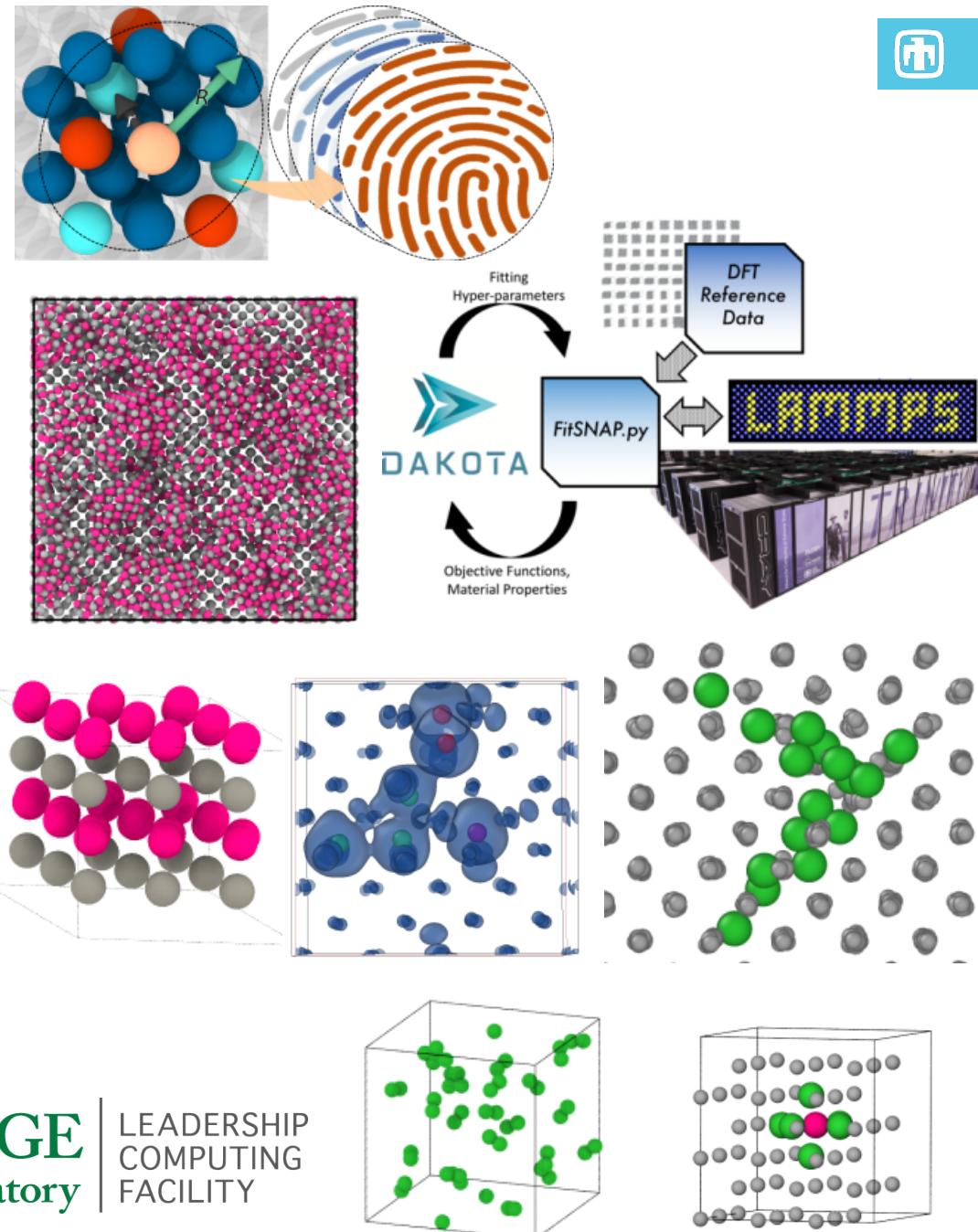


Improving Potentials with Active Learning



Summary and Future Work

- Understanding material degradation in PFMs is critical for designing viable fusion reactors
- Atomistic modeling plays a key role in understanding relevant physical mechanisms for material degradation at the divertor
- We have developed a variety of SNAP potentials for studying PMIs in tungsten and these potentials have been used to for large-scale MD simulations
- Future Work:
 - Development of W-Be-H potentials to study H retention in mixed W-Be surfaces
 - Development of W-N-H to study H trapping and ammonia formation on W-N surfaces



Contact:
mcusent@sandia.gov

Office of
 Science

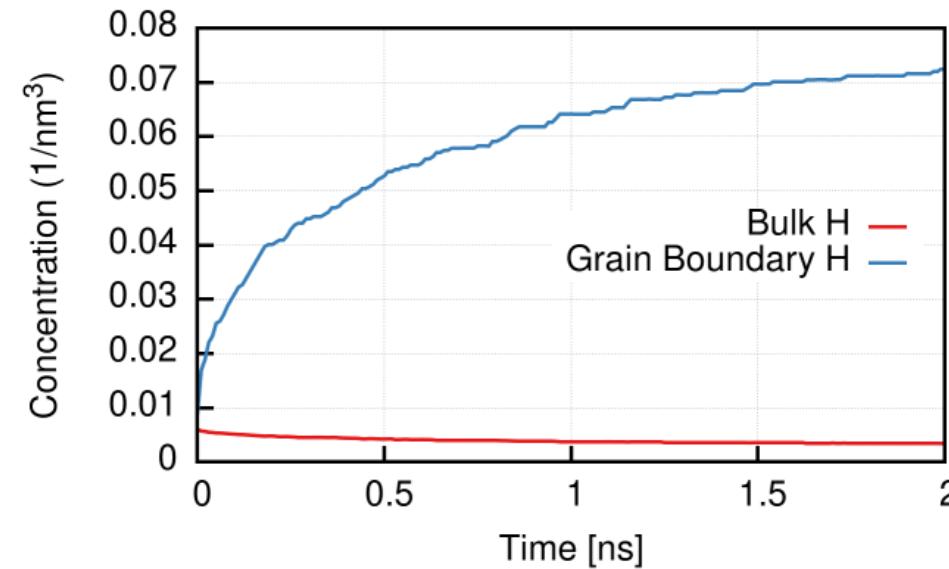
OAK RIDGE
 National Laboratory

LEADERSHIP
 COMPUTING
 FACILITY

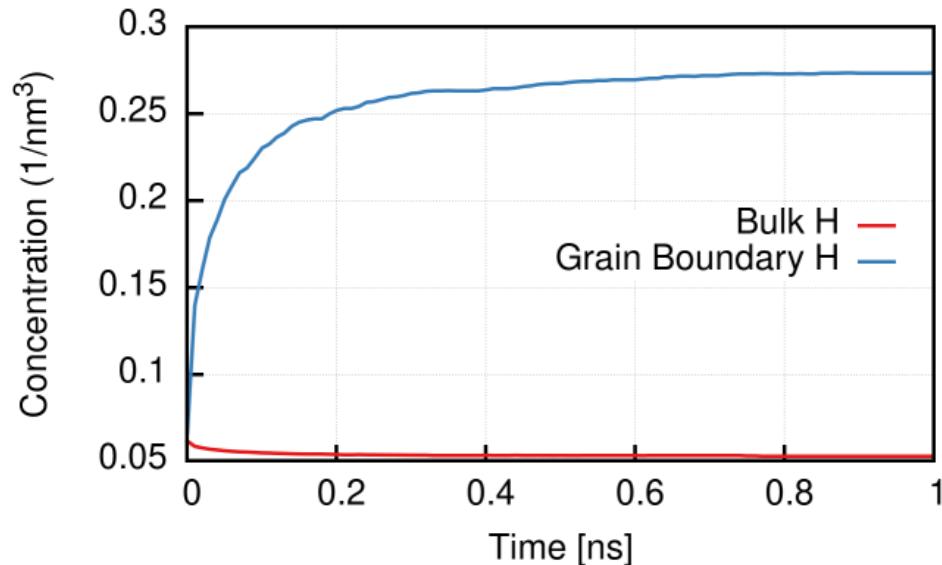
Backup Slides

Twin GB (H = 0.01%, 0.1%, 1%), H-concentration (MW plot)

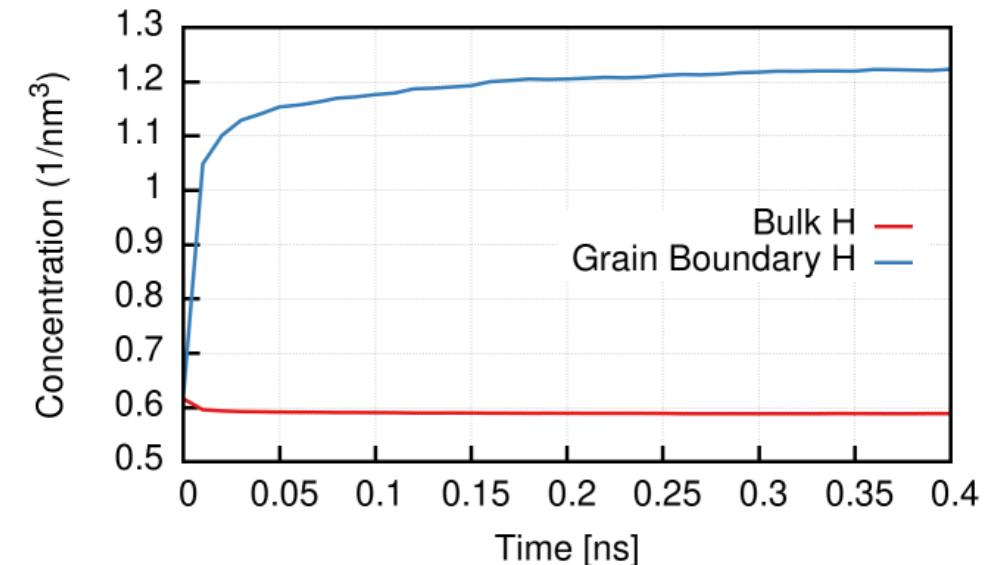
W H-0.01%



W H-0.1%

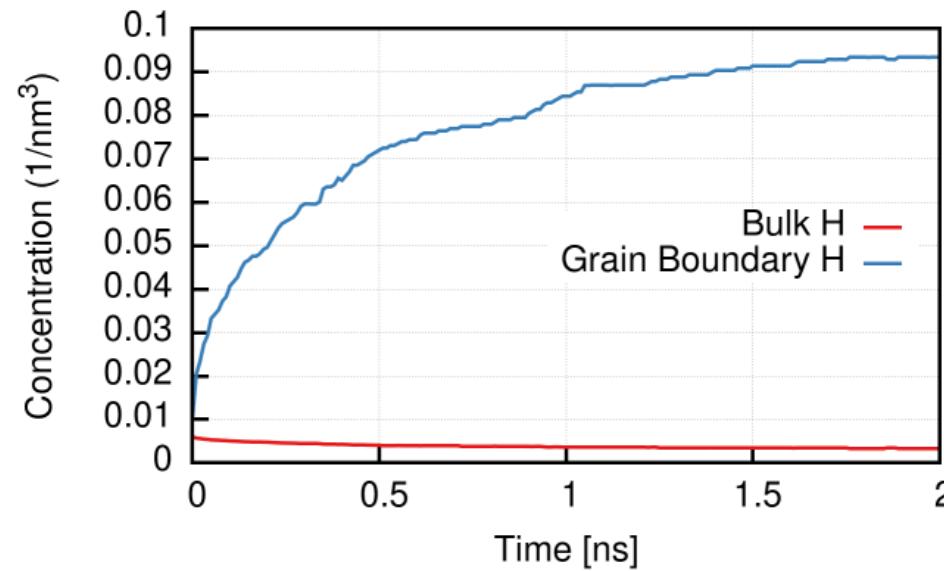


W H-1%

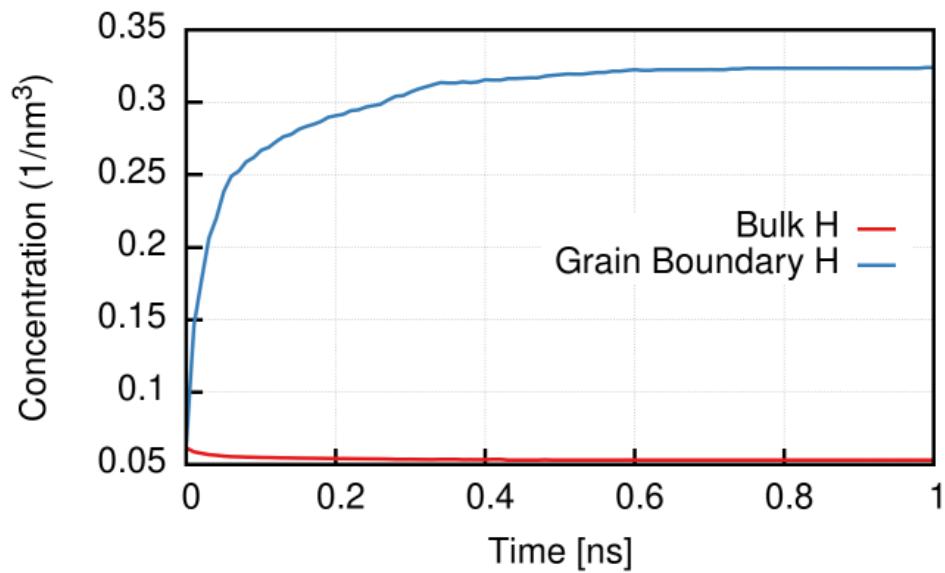


$\Sigma 5$ GB ($H = 0.01\%, 0.1\%, 1\%$), H-concentration (MW plot)

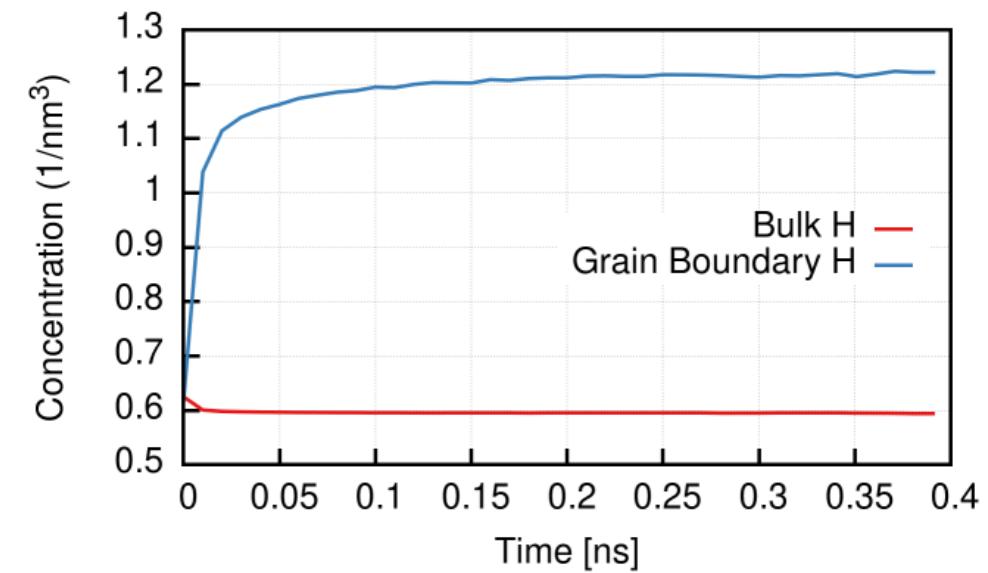
W H-0.01%



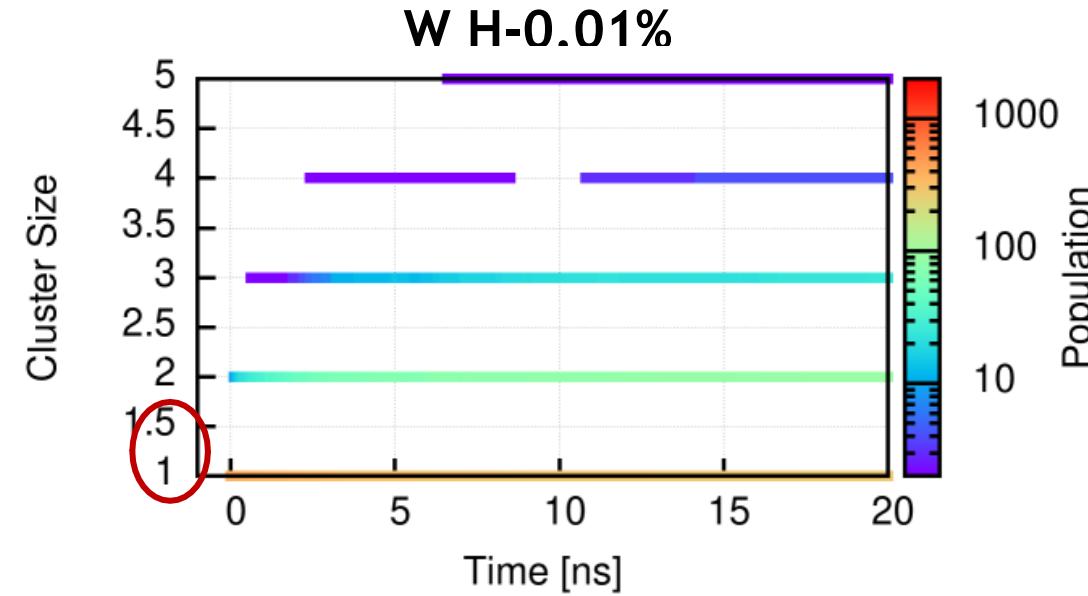
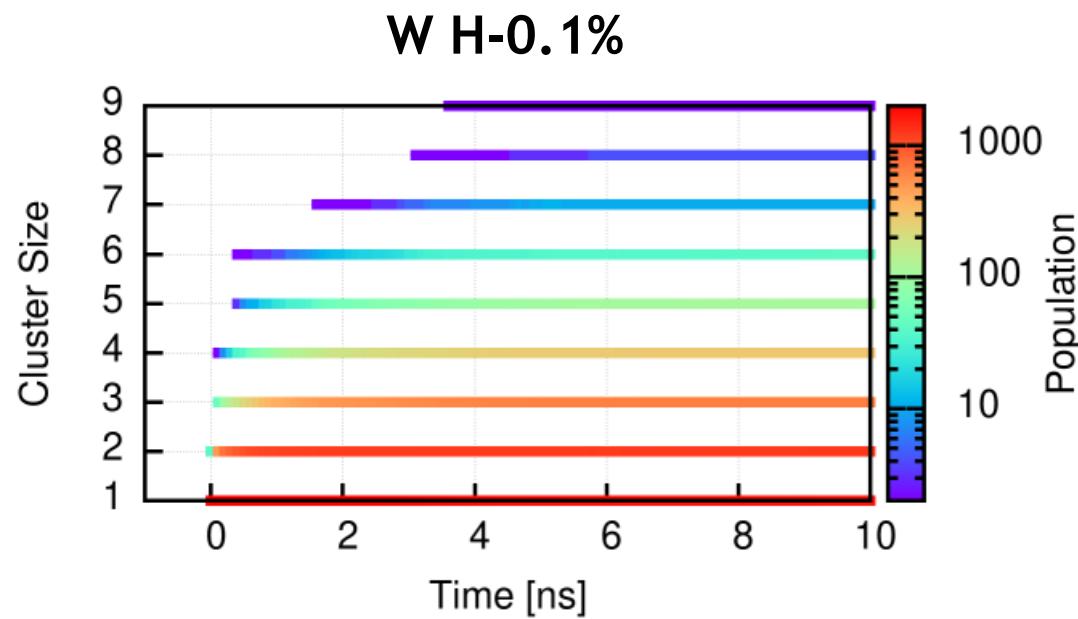
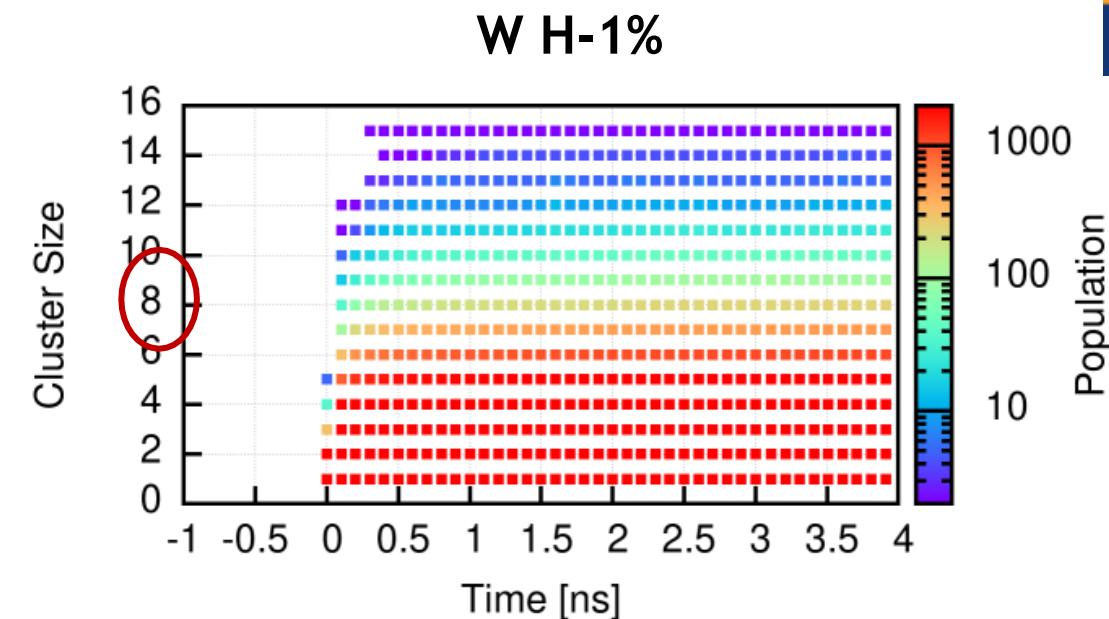
W H-0.1%



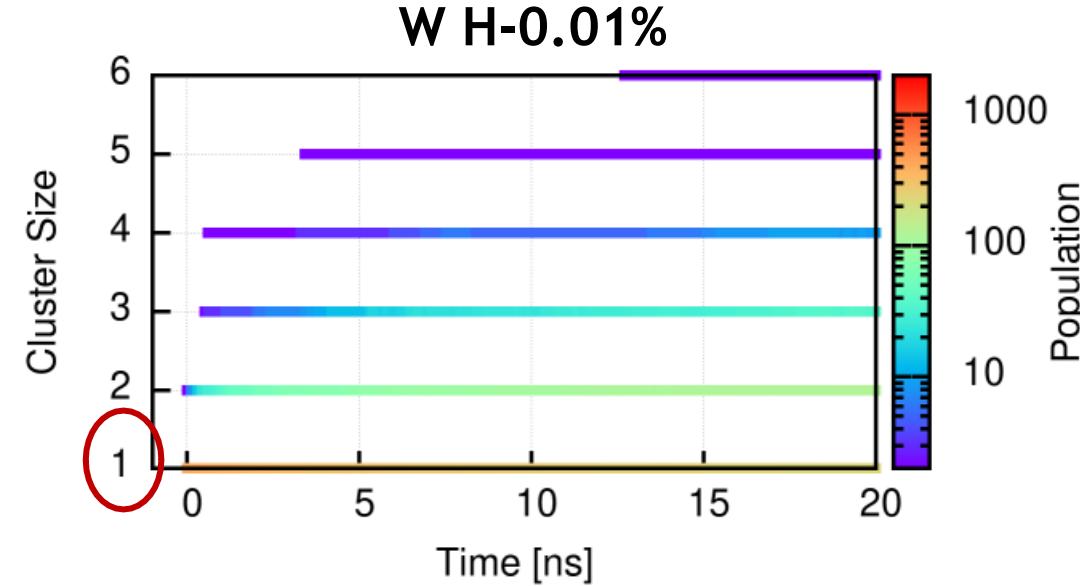
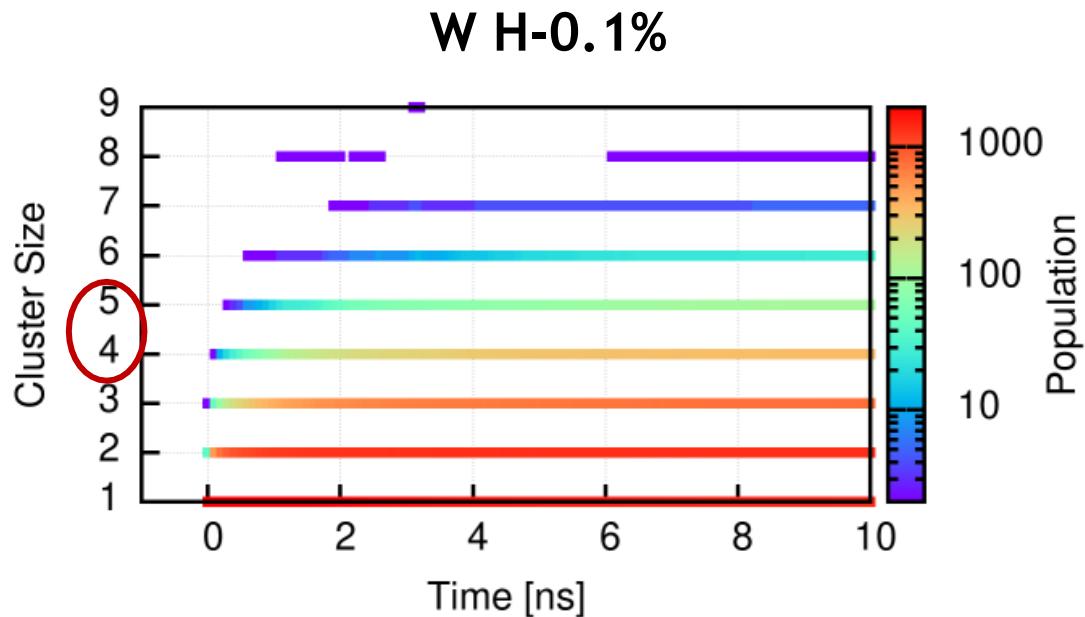
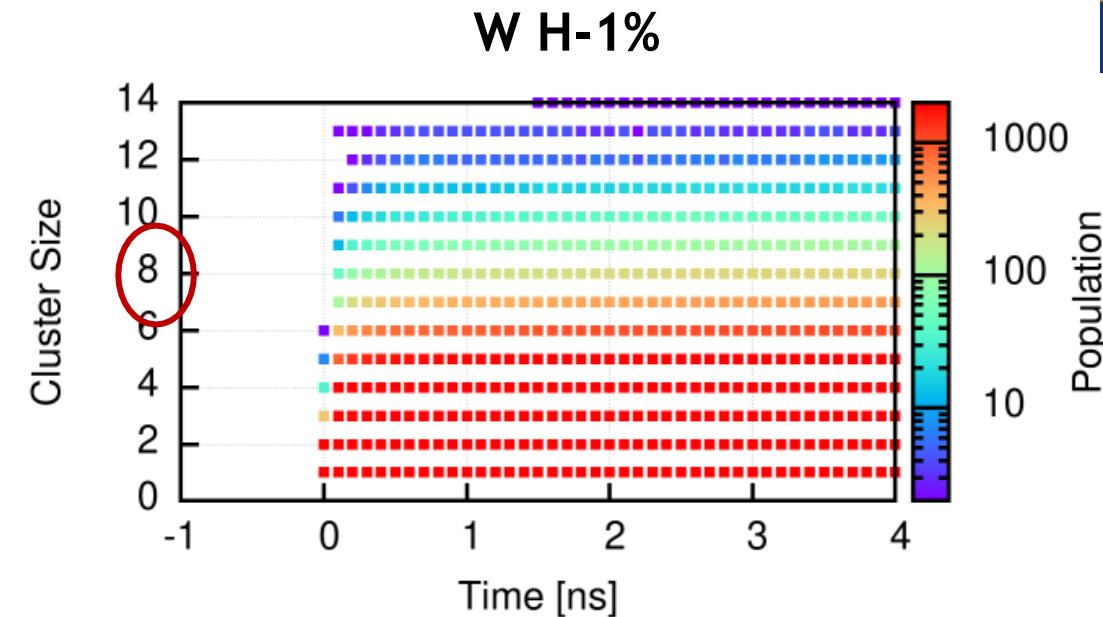
W H-1%



Twin GB ($H = 0.01\%, 0.1\%, 1\%$), cluster information



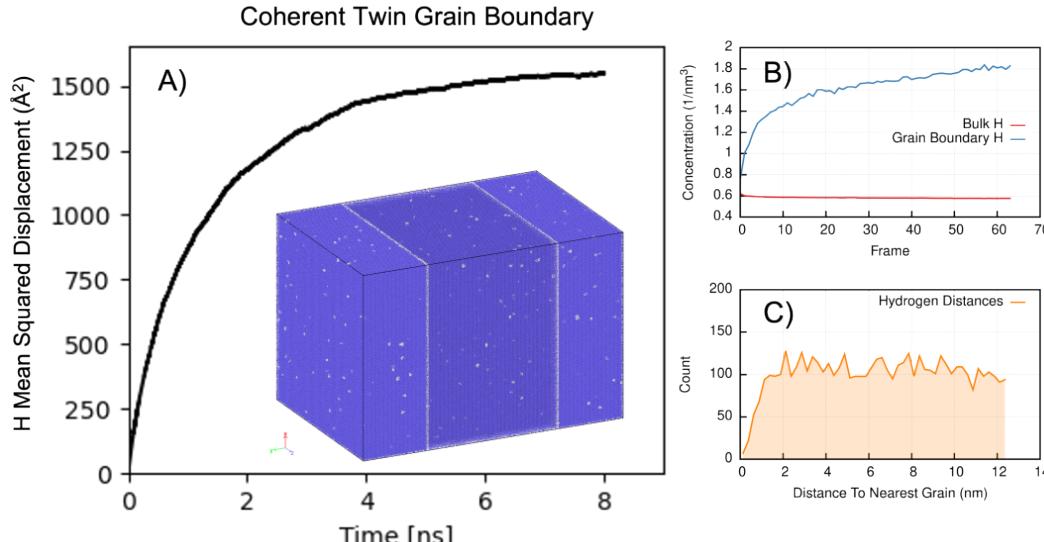
$\Sigma 5$ GB ($H = 0.01\%, 0.1\%, 1\%$), cluster information



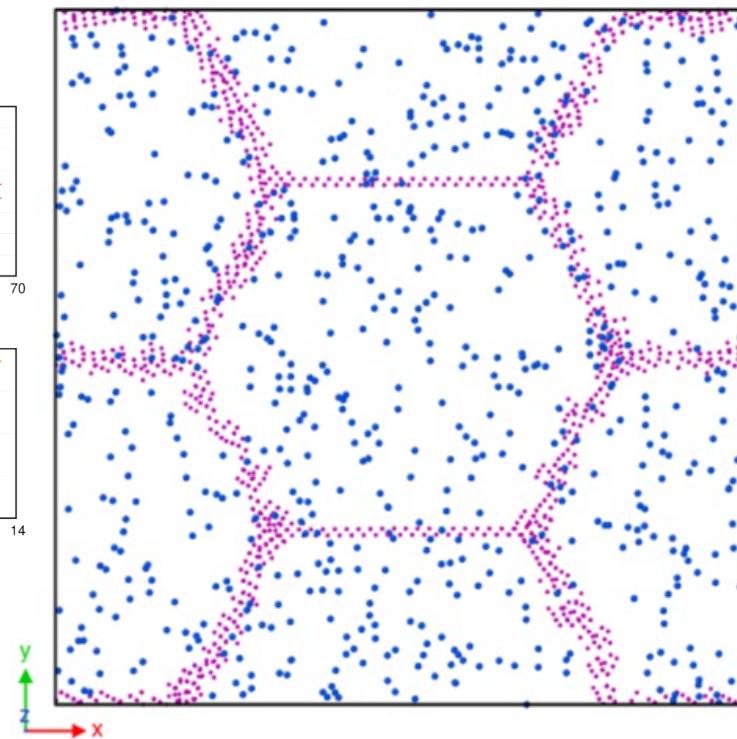
Large-Scale W-H Simulations on Summit

Modeling different GB configurations to investigate trapping at platelets vs. GBs

H Distribution with Twin GB



Polycrystalline W with H Seeding



H Implantation with Twin GB

