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Computing Adjoints using Contributon 
Theory
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 Generalized Perturbation Theory

 Generalized Perturbation Theory (GPT) calculates sensitivity coefficients 
for responses that can be expressed as the ratio of reaction rates.

 Calculating generalized sensitivity coefficients requires solving
an inhomogeneous, or generalized, adjoint equation:

 Applications for GPT sensitivity/uncertainty analysis include:
 Relative Powers
 Isotope Conversion Ratios
 Multigroup Cross Sections

+ C. M. Perfetti, B. T. Rearden, “Development of a Generalized 
Perturbation Theory Method for Uncertainty and Sensitivity 
Analysis using Continuous-Energy Monte Carlo Methods,” 
Nucl. Sci. Eng., 182, 3, 354–368 (2016).



Radiation Transport Equations

Neutron Transport Photon + Electron Transport
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Electrons:



Radiation Transport Equations

Neutron Transport Photon + Electron Transport
Photons:
Electrons:

Responses of Interest



Adjoint Radiation Transport Equations

Neutron Transport Photon + Electron Transport
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Deriving GPT Sensitivity Coefficients for Coupled 
Transport

Through Contributon Theory:



Proof of Principle



Results

Response 
in Cell:

Calculated 
Sensitivity

Direct Pert. 
Sensitivity Diff.

Photon Absorption Response Sensitivity

1 0.368 ± 0.001 0.365 ± 0.010 0.28 σ

2 -0.023 ± 0.003 -0.025 ± 0.013 0.13 σ

3 -0.802 ± 0.006 -0.783 ± 0.033 -0.58 σ

4 -1.674 ± 0.010 -1.700 ± 0.012 1.62 σ

5 -2.583 ± 0.018 -2.549 ± 0.126 -0.27 σ

6 -3.459 ± 0.030 -3.611 ± 0.264 0.57 σ

7 -4.384 ± 0.048 -4.484 ± 0.335 0.29 σ

8 -5.332 ± 0.079 -5.176 ± 0.709 -0.22 σ

9 -6.055 ± 0.131 -6.353 ± 0.865 0.34 σ

10 -6.952 ± 0.226 -6.694 ± 1.439 -0.18 σ

Response 
in Cell:

Calculated 
Sensitivity

Direct Pert. 
Sensitivity Diff.

Electron Absorption Response Sensitivity

1 0.214 ± 0.001 0.211 ± 0.022 0.14 σ

2 0.002 ± 0.005 -0.043 ± 0.024 1.88 σ

3 -0.719 ± 0.010 -0.671 ± 0.053 -0.90 σ

4 -1.612 ± 0.018 -1.669 ± 0.070 0.80 σ

5 -2.544 ± 0.031 -2.338 ± 0.035 -4.42 σ

6 -3.451 ± 0.049 -3.472 ± 0.119 0.16 σ

7 -4.187 ± 0.079 -3.897 ± 0.397 -0.72 σ

8 -5.676 ± 0.136 -4.806 ± 1.113 -0.78 σ

9 -5.923 ± 0.197 -6.728 ± 1.206 0.66 σ

10 -6.924 ± 0.370 -8.258 ± 2.000 0.66 σ

Sensitivity of Photon Absorption to Photon Total 
Cross Sections 

Sensitivity of Electron Absorption to Photon 
Total Cross Sections 



Results: Sensitivity of Photon Absorption 
to Group 1 Photon XS
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Results: Sensitivity of Photon Absorption 
to Photon-Electron Secondary Particle 
Production
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Results: Sensitivity of Photon 
Absorption to the Incident Photon 
Source Spectrum



Results: Sensitivity of Electron 
Absorption to the Incident Photon 
Source Spectrum



Conclusions

 This work has extended the CLUTCH method to estimate the 
sensitivity of responses in coupled radiation transport simulations.

 This methodology was demonstrated in a 1-D Monte Carlo code 
and its accuracy was confirmed through Direct Perturbation 
reference calculations.

 Ongoing work will extend this methodology to the ITS radiation 
transport code.
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