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Introduction

| Sensitivity coefficients describe the fractional change in a response that is
due to perturbations or uncertainties in system parameters.
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| Several codes (TSUNAMI, Serpent, MCNP, OpenMC) estimate sensitivity
coefficients for critical eigenvalue or reaction rate ratio responses:
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Introduction

| There is a need to extend nuclear criticality safety-centric sensitivity and
uncertainty analysis to fixed-source, charged particle, energy deposition
applications. Doing so will allow for:
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Introduction

There is a need to extend nuclear criticality safety-centric sensitivity and
uncertainty analysis to fixed-source, charged particle, energy deposition

applications. Doing so will allow for:

= Quantifying the impact of uncertain cross section data;
= Calibrating uncertain cross section data and physics models; and
= |dentifying benchmark experiments that validate sources of uncertainty.

The goal of this work was to explore whether recently developed reaction
rate sensitivity methods can be extended to coupled photon-electron Monte
Carlo radiation transport simulations.

This new sensitivity methodology was implemented into a 1-D Monte Carlo

code and Direct Perturbation calculations were used to confirm its accuracy.
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Computing Adjoints using Contributon

Theory

O | —

(DPTQ) = (1 dTPD)
Q — Qsé‘(r - TS)
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Generalized Perturbation Theory

| Generalized Perturbation Theory (GPT) calculates sensitivity coefficients
for responses that can be expressed as the ratio of reaction rates. :

¢ _ SR/R (Z9)
R = 52,/ 2, " {(2,0)

| Calculating generalized sensitivity coefficients requires solving
an inhomogeneous, or generalized, adjoint equation:

(" — AP =S*

| Applications for GPT sensitivity/uncertainty analysis include:
= Relative Powers

u ISOtO pe Conve rS|On Ratlos + C. M. Perfetti, B. T. Rearden, “Development of a Generalized
M I t C S t Perturbation Theory Method for Uncertainty and Sensitivity
= uliugrou ross ectons Analysis using Continuous-Energy Monte Carlo Methods,”
9 P SNA NUCLEAR Nucl. Sci. Eng., 182, 3, 354-368 (2016).
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Radiation Transport Equations

Neutron Transport Photon + Electron Transpor
Photons: T ® = Siota1 = Spho. + P Y

Electrons: tvY = Siotar = Sete. + P P

(L—AP)¢ =0
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Radiation Transport Equations

Neutron Transport Photon + Electron Transpor
Photons: T ® = Siota1 = Spho. + P Y

(L—AP)p =0
Electrons: tvY = Siotar = Sete. + P P
Responses of Interest
R = (Zrpho.P)
(Z19) P
R = R = (2R ele.
(Z20) (ZRete )

R = (Zapha.(D) + (ER,ele.lp)
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Adjoint Radiation Transport Equations

Photon + Electron Transpor

Neutron Transport
tt= t = T4 t ¢

b aphyt R Photons:
L' —APNYI''" =8
( ) Electrons: b= 1T = T4 t 1
Adjoint Source Terms
Photons: ¢t = 16_R =X
ot = 1R _ 2y 2 " R&D Rpho.
Rép (Z1¢) (Z:0) Elect _ +_ 1R
ectrons: ¢t = 50 = ZRele.
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Deriving GPT Sensitivity Coefficients for Coupled

Transport

Introducing perturbations to the BTEs, multiplying by @ and yT,
and taking the inner product:

Photons: (®T6T @)+ (®TT 6@) = (®T6S) + (®T6P ) + (@ TPS&Y)
Electrons: (YTéty) + (yTtéy) = (YT6s) + (pTép @) + (Y Tp 50)
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Deriving GPT Sensitivity Coefficients for Coupled

Transport

Introducing perturbations to the BTEs, multiplying by @ and yT,
and taking the inner product:

Photons: (®T6T @)+ (®TT 6@) = (®T6S) + (TP ) + (@ TPsY)
Electrons: (YT6ty)+ (vt éy) = (Y18s) + (Y1op @) + (YTp 6@)
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Deriving GPT Sensitivity Coefficients for Coupled

Transport

Combining these equations, recalling our previous
definitions, and a little bit of magic yields:
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Deriving GPT Sensitivity Coefficients for Coupled

Transport

Combining these equations, recalling our previous /-
definitions, and a little bit of magic yields: '

5Rmdirect 1 R 1 OR
7 50 5°)* 7 5

= (6@ ST) + (59 sT)

(D15S) — (DTST @) + (DTPSY)

+ (Ytss) — (YToty) + (YTép @)

&p)
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Deriving GPT Sensitivity Coefficients for Coupled

Transport
6‘Rindirect B 1 R 5 1 OR 5
=z )+(Eﬁ V)
= (6@ ST) + (59 sT)

= (®T8S) — (DT6T @) + (OTPSY)
+ (pTés) — (ioty) + (YTép @)
Through Contributon Theory:
®T(7) = (®(x > 1) ST() + (YWI(r) P(r) @(x > 1))
Y1) = (Y@ - 1) sTr) + (@T) p(r)yY(r > 1))
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Proof of Principle

= This methodology was implemented and
tested in a 1-D Monte Carlo Code.

= 3 energy groups.
= Physics set to emulate true physics.

* Photons were assumed to only produce
secondary electrons, and vice versa.

= Response set to the overall photon and
electron absorption rates:

Rl = (ER,pho.‘p) RZ = QzR,ele.w)

= Responses and sensitivities were tallied
across 10 equal width regions.

= Reference sensitivities obtained through
Direct Perturbation.
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Sensitivity of Photon Absorption to Photon Total
Cross Sections

Response Calculated Direct Pert.
in Cell: Sensitivity Sensitivity

Photon Absorption Response Sensitivity

0.368 + 0.001
-0.023 + 0.003
-0.802 + 0.006
-1.674 £ 0.010
-2.583 £ 0.018
-3.459 + 0.030
-4.384 + 0.048
-5.332 £ 0.079
-6.055 + 0.131
-6.952 + 0.226

0.365 +0.010
-0.025 £ 0.013
-0.783 £ 0.033
-1.700 £ 0.012
-2.549 £ 0.126
-3.611 £ 0.264
-4.484 + 0.335
-5.176 £ 0.709
-6.353 + 0.865
-6.694 £ 1.439

0.28 0
0.130
-0.58 ¢
1620
-0.27 0
0.57 0
0290
-0.22 0
0.340
-0.18 0

I,
Y1

Sensitivity of Electron Absorption to Photon
Total Cross Sections

Response Calculated Direct Pert.
in Cell: Sensitivity Sensitivity
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0.214 + 0.001
0.002 = 0.005
-0.719 £ 0.010
-1.612 £ 0.018
-2.544 + 0.031
-3.451 £ 0.049
-4.187 + 0.079
-5.676 £ 0.136
-5.923 £ 0.197
-6.924 + 0.370

Electron Absorption Response Sensitivity

0.211 £ 0.022
-0.043 £ 0.024
-0.671 £ 0.053
-1.669 £ 0.070
-2.338 + 0.035
-3.472 £0.119
-3.897 £ 0.397
-4.806 £ 1.113
-6.728 + 1.206
-8.258 £ 2.000

0140
1.880
-090 0
0.80 0
4420
0.16 0
-0.72 0
-0.78 o
0.66 0
0.66 o



Results: Sensitivity of Photon Absorption

to Group 1 Photon XS

Sensitivity of Photon Absorption to Group 1 Photon XS
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Results: Sensitivity of Electron Absorption

to Group 1 Photon XS

Sensitivity of Electron Absorption to Group 1 Photon X5
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Results: Sensitivity of Photon Absorption

to Group 2 Photon XS

Sensitivity of Photon Absorption to Group 2 Photon XS
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Results: Sensitivity of Electron Absorption

to Group 2 Photon XS

Sensitivity of Electron Absorption to Group 2 Photon X5
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Results: Sensitivity of Photon Absorption

to Group 3 Photon XS

Sensitivity of Photon Absorption to Group 3 Photon XS
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Results: Sensitivity of Electron Absorption

to Group 3 Photon XS

Sensitivity of Electron Absorption to Group 3 Photon X5
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to Photon-Electron Secondary Particle

Sensitivity of Photon Absorption to Photon-Electron Prc-clucticén
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to Photon-Electron Secondary Particle

Sensitivity of Electron Absorption to Photon-Electron Pmductigg
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Sensitivity of Electron Absorption to Photon Source Spectrum
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Conclusions

|

This work has extended the CLUTCH method to estimate the
sensitivity of responses in coupled radiation transport simulations.

This methodology was demonstrated in a 1-D Monte Carlo code
and its accuracy was confirmed through Direct Perturbation
reference calculations.

Ongoing work will extend this methodology to the ITS radiation
transport code.
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Questions?

Please contact:
Chris Perfettl
cperfetti@unm.edu
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