
Except ional serv ice in the nat ional in terest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department

of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Characterizing the Performance
of Task Reductions in OpenMP
5.X Implementations
Jan Ciesko, Stephen Olivier

Thursday, 29th September, 2022

UT, Chattanooga, Tennessee,

SAND2022-13337CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Agenda

2

• Reductions in OpenMP
• Implementations in LLVM/Clang and GCC
• Benchmarks
• Evaluation
• Conclusion

Reductions in OpenMP

3

• OpenMP supports reductions since V1.0
• Tasking since V3.0 in 2008
• Demand for task-parallel reductions
• I started working on this in 2013
• Presented to OMP LC in 2015.
• Proposal made it into the spec in 2018

(OpenMP 5.0)
• Task reductions are conceptually

concurrent and are orthogonal to the
depend clause

• Compiler support evaluation is important for
performance portability
• How well did we do in the spec?
• Did implementers implement the spec?

Reductions in OpenMP

4

Clause Semantic Description

reduction(task, op:
var)

Scoping,
Participation

Scopes a task reduction for a
parallel or work-sharing
region*.

reduction(op: var) Scoping,
Participation

Scopes a task reduction for a
taskloop region and makes
created tasks participants.

task_reduction(op:
var) Scoping Scopes a task reduction for a

taskgroup region.

in_reduction(op: var) Participation
Denotes participation of a task,
target task, or taskloop in a
task reduction.

• Task reductions allow reductions computed by arbitrary task graphs
• Challenge: definition of participating tasks and of the scope of the reduction computations
• Clauses for task reductions:

• ‘task’ reduction modifier on construct only for ‘parallel’, ‘for’, ‘sections’ or ‘scope

Rule of Thumb:
1. Participating tasks must

have a enclosing scope that
defines a task reduction

2. The reduction computation
completes by the time the
scope ends

Implementations in GCC and LLVM/Clang

5

• Privatization and data
reuse

*GCC Version 13,
20220518

GCC

gcc -fopenmp -c task.c
-fdump-tree-optimized -
o task.o.gcc

clang -Xclang -S -
emit-llvm -
Xpreprocessor -
fopenmp -c task.c -o
task.o.s.llvm (not
shown)

// reference to original reduction storage location
// new double pointer

// redirect
// dereference

// use

Benchmarks

6

Applications*
• Fibonacci
• Powerset
• Powerset-UDR
• Dot-product

6 implementations each:
• Parallel task-reduction
• Taskloop reduction
• Taskgroup reduction
• Manual per-thread

data privatization
• Atomics
• Stack

* OMP-TB [1] contains further examples
[1] https://github.com/sandialabs/openmp_task_bench

https://github.com/sandialabs/openmp_task_bench

Implementation: Fibonacci

7

• Parallel task reduction using manual cut-off
In results: “parallel-red”

main

task Note: we avoided
the use of final

Implementation: Fibonacci

8

• Taskgroup reductions using
manual cut-off

In results: “taskgroup-red”

main

task

Implementation: Fibonacci

9

• Using the stack and manual cut-off In results: “stack”

main

task

Implementation: Fibonacci

10

• Using explicit threadprivate and manual cut-off

In results: “threadpriv”

task

main

Evaluation

11

System configuration:
• LLVM/Clang 14.0 (release)
• GCC 13 (code version dated 20220518)
• Intel® Xeon® Skylake Platinum 8160 Processor, dual-socket, 48 cores,

(blake.sandia.gov)
• 192GB RAM
• Flags: -fopenmp, -Wall, -Wextra, -pedantic, -Werror, -O3.
• Env: OMP_PROC_BIND = close, OMP_PLACES = cores (one thread per core

with incremental core IDs)
Methodology
• Each benchmark ran 5x, average time and standard deviation recorded
• Generate very large task counts to accumulate overheads
• Downside: tasking vs reduction overheads blend together

Evaluation: Fibonacci

12

• Time over number of tasks, N=33, 48 threads, variable cut-off, 1.2k – 11405k tasks

3

1) Stack has lowest OH, OH with # tasks, has TW
2) TP has low OH but requires manual reduction
3) Comparable performance

2
1 3

2

1

Evaluation: Powerset

13

• Time over number of tasks, N=18, 48 threads, variable cut-off, 2 - 265k tasks

1) Similar behavior of taskwait to Fib
2) Taskgroup and taskloop diverge (3), due to

differences in reduction list item lookup and
explicit task creation (taskloop)

3

21

3

2

1

Evaluation: Powerset UDR

14

• Time over reduction size (UDR), 4B – 131kB, 48 threads, 262k tasks

1) Stack accesses causing cache faults (LLVM)
2) Differences in reduction list item look-up and

explicit task creation (taskloop)

3

2

1 3

2
1

Evaluation: Dot-product (not recursive)

15

• Time over number of tasks, N=224, 128MB, 48 threads, variable cut-off, 2 - 131k tasks

1) Execution with work for 48 threads
2) Parallel for is invariant as it does not use

tasks

1

1

Conclusion

16

• Both compilers support task-parallel reductions as in the spec
• Performance is comparable to manually implemented and optimized reductions
• For large task counts, tasking overheads dominate (incl. taskwait)
• We recommend the use of these constructs

Future work
• Evaluation of tasking implementations in LLVM/Clang and GCC

Links:
[1] https://github.com/sandialabs/openmp_task_bench

https://github.com/sandialabs/openmp_task_bench

