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Reductions in OpenMP
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• OpenMP supports reductions since V1.0
• Tasking since V3.0 in 2008
• Demand for task-parallel reductions
• I started working on this in 2013
• Presented to OMP LC in 2015.
• Proposal made it into the spec in 2018 

(OpenMP 5.0)
• Task reductions are conceptually 

concurrent and are orthogonal to the 
depend clause

• Compiler support evaluation is important for 
performance portability
• How well did we do in the spec?
• Did implementers implement the spec? 



Reductions in OpenMP
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Clause Semantic Description

reduction(task, op: 
var)

Scoping, 
Participation

Scopes a task reduction for a 
parallel or work-sharing 
region*.

reduction(op: var) Scoping, 
Participation

Scopes a task reduction for a 
taskloop region and makes 
created tasks participants.

task_reduction(op: 
var) Scoping Scopes a task reduction for a 

taskgroup region.

in_reduction(op: var) Participation
Denotes participation of a task, 
target task, or taskloop in a 
task reduction.

• Task reductions allow reductions computed by arbitrary task graphs
• Challenge: definition of participating tasks and of the scope of the reduction computations
• Clauses for task reductions:

• ‘task’ reduction modifier on construct only for ‘parallel’, ‘for’, ‘sections’ or ‘scope

Rule of Thumb:
1. Participating tasks must 

have a enclosing scope that 
defines a task reduction

2. The reduction computation 
completes by the time the 
scope ends



Implementations in GCC and LLVM/Clang
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• Privatization and data 
reuse

*GCC  Version 13, 
20220518 

GCC

gcc -fopenmp -c task.c  
-fdump-tree-optimized -
o task.o.gcc

clang -Xclang -S -
emit-llvm  -
Xpreprocessor -
fopenmp -c task.c -o 
task.o.s.llvm (not 
shown)

// reference to original reduction storage location
// new double pointer

// redirect
// dereference

// use



Benchmarks
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Applications*
• Fibonacci
• Powerset
• Powerset-UDR
• Dot-product

6 implementations each:
• Parallel task-reduction
• Taskloop reduction
• Taskgroup reduction
• Manual per-thread 

data privatization
• Atomics
• Stack

* OMP-TB [1] contains further examples
[1] https://github.com/sandialabs/openmp_task_bench

https://github.com/sandialabs/openmp_task_bench


Implementation: Fibonacci
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• Parallel task reduction using manual cut-off
In results: “parallel-red”

main

task Note: we avoided 
the use of final 



Implementation: Fibonacci
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• Taskgroup reductions using 
manual cut-off

In results: “taskgroup-red”

main

task



Implementation: Fibonacci
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• Using the stack and manual cut-off In results: “stack”

main

task



Implementation: Fibonacci
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• Using explicit threadprivate and manual cut-off

In results: “threadpriv”

task

main



Evaluation
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System configuration:
• LLVM/Clang 14.0 (release)
• GCC 13 (code version dated 20220518)
• Intel® Xeon® Skylake Platinum 8160 Processor, dual-socket, 48 cores, 

(blake.sandia.gov) 
• 192GB RAM
• Flags: -fopenmp, -Wall, -Wextra, -pedantic, -Werror, -O3. 
• Env: OMP_PROC_BIND = close, OMP_PLACES = cores (one thread per core 

with incremental core IDs)
Methodology
• Each benchmark ran 5x, average time and standard deviation recorded
• Generate very large task counts to accumulate overheads
• Downside: tasking vs reduction overheads blend together



Evaluation: Fibonacci

12

• Time over number of tasks, N=33, 48 threads, variable cut-off, 1.2k – 11405k tasks

3

1) Stack has lowest OH, OH with # tasks, has TW
2) TP has low OH but requires manual reduction
3) Comparable performance

2
1 3

2
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Evaluation: Powerset
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• Time over number of tasks, N=18, 48 threads, variable cut-off, 2 - 265k tasks

1) Similar behavior of taskwait to Fib
2) Taskgroup and taskloop diverge (3), due to 

differences in reduction list item lookup and 
explicit task creation (taskloop)

3

21

3

2
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Evaluation: Powerset UDR
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• Time over reduction size (UDR), 4B – 131kB, 48 threads, 262k tasks

1) Stack accesses causing cache faults (LLVM)
2) Differences in reduction list item look-up and 

explicit task creation (taskloop)

3

2

1 3

2
1



Evaluation: Dot-product (not recursive)
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• Time over number of tasks, N=224, 128MB, 48 threads, variable cut-off, 2 - 131k tasks

1) Execution with work for 48 threads
2) Parallel for is invariant as it does not use 

tasks

1

1



Conclusion
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• Both compilers support task-parallel reductions as in the spec
• Performance is comparable to manually implemented and optimized reductions
• For large task counts, tasking overheads dominate (incl. taskwait) 
• We recommend the use of these constructs

Future work
• Evaluation of tasking implementations in LLVM/Clang and GCC

Links:
[1] https://github.com/sandialabs/openmp_task_bench

https://github.com/sandialabs/openmp_task_bench

