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P Reductions in OpenMP

OpenMP supports reductions since V1.0 OpenMP C and C++ Application
Program Interface
* Tasking since V3.0 in 2008 Version 1.0 — October 1998

« Demand for task-parallel reductions

2.3 parallel Construct

. . . The following directive defines a parallel region, which is a region of the program that
° I Sta rted WO rkl ng On th IS In 201 3 is to be executed by multiple threads in parallel. This is the fundamental construct

that starts parallel execution.

° Presented tO OMP LC In 201 5- #pragma omp parallel [clause[ clause] ...] new-line

structured-block

¢ Proposal made It Into the SpeC In 2018 The clause is one of the following:
(OpenMP 5.0) if (scalar-expression)

private (list)

* Task reductions are conceptually firstprivate lish)
8 004-2229-001
concurrent and are orthogonal to the
depend clause
« Compiler support evaluation is important for
OpenMP C and C++ Application Program Interface Directives [2]

performance portability
*  How well did we do in the spec? sefautt (shared | none)

* Did implementers implement the spec? shared (list)

copyin(list)

reduction (operator: list)
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/" Reductions in OpenMP

Task reductions allow reductions computed by arbitrary task graphs

Challenge: definition of participating tasks and of the scope of the reduction computations

Clauses for task reductions:

Clause Semantic Description
Scopes a task reduction for a

il R R sieel el parallel or work-sharing

var) Participation S
region*.
: Scopes a task reduction for a
Scoping,

taskloop region and makes
created tasks participants.
Scopes a task reduction for a
taskgroup region.

Denotes participation of a task,
in_reduction(op: var) Participation target task, or taskloop in a

s . . ‘ task reduction.
« ‘task’ reduction modifier on construct only for ‘parallel’, ‘for’, ‘sections’ or ‘scope

reduction(op: var)

Participation

task_reduction(op:

var) Scoping

Rule of Thumb:

1.

Participating tasks must
have a enclosing scope that
defines a task reduction

. The reduction computation

completes by the time the
scope ends




/" Implementations in GCC and LLVM/Clang
/4

/’ I void func(int &sum) { gcc _fopenmp -c task.c
) ) ) 2 #pragma omp taskgroup task_reduction(+ : sum) P
° Pr|Vat|Zat|On and data 3 #pragma omp task in_reduction(+ : sum) -fdump-tree-optlmlzed-
reuse 1 sum++; o task.o.gcc
5 }
1 void func (int & sum) { clang -Xclang -S -
2 struct .omp_data_s.0 .omp_data_o.1l; :
. T emit-livm -
4 .omp_data_o.1.sum = sum_2(D); Xpreprocessor-
5 __builtin_GOMP_task (_Z4funcRi._omp_fn.0, &.omp_data_o.1, OB, 8, 8, 1, fopenmp -c task.c -o
0, 0B, 0, OB); task.o.s.ll t
6 return: ask.o.s.llvm (no
7} shown)
8
9 void _Z4funcRi._omp_fn.0 (struct .omp_data_s.0 & restrict .omp_data_i) {
10 .« o 0n
11 void * D.2516[1]; // new double pointer
12 -3 = .omp_data_i_2(D)->sum; // reference to original reduction storage location
13 D.2516[0] = _3;
14 _-builtin_GOMP_task_reduction_remap (1, O, &D.2516); @ /redirect
15 sum_6 = D.2516[0]; // dereference
16 _10 = *xsum_6;
17 211 = _10 + 1; /fuse
18 *sum_6 = _11;
19 return; *GCC Version 13,
20 } 20220518




BenChmarkS ‘= README.md V4
OMP Task Bench (OMP-TB)

App| ICatIOnS OMP-TB is a collection of benchmarks to measure tasking performance and tasking-related features in
OpenMP. Currently it includes benchmark as listed below. Benchmarks in the reductions sub-directory
° F|b0naCC| target task-parallel reduction support. In general, such benchmarks are useful to evaluate compiler language

support as well as its efficient implementation.

* Powerset
* Powerset-UDR OMP-TB Benchmarks

° DOt-prOdUCt » reductions/dot (Dot Product)

» reductions/fib (Fibonacci)

» reductions/powerset (Powerset Permutations)

6 implementations each:
° Para”el task-reduction s reductions/powerset-UDR (Powerset Permutations using user-defined reductions)

» reductionsfothers/array_sum (Array Sum)

« reductions/powerset-final (Powerset Permutations using the final OpenMP clause)

» Taskloop reduction

s reductions/others/knapsack (Knapsack)

° TaSkgrOUp reduction « reductions/others/knightstour (Knights Tour)
° Manual per-thread » reductionsfothers/max_height_tree (Max Height)
data p”Vatlzatlon s reductions/others/nbinarywords (n-Permutations)
» reductions/others/nqueens (N-Queens)
* Atomics

s reductions/others/TSP (Travelling Salesman Problem)

« Stack

[1] https://github.com/sandialabs/openmp_task bench
* OMP-TB [1] contains further examples
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- Parallel task reduction using manual cut-off

OCOoOO~dNOOUE WNRE

el el el
OB WNRO®

v

Implementation: Fibonacci

In results: “parallel-red

17 main
18 #pragma omp parallel reduction(task, + : sum) \
19 num_threads(conf.num_threads)

void fib(int n, int &sum) { 20 #pragma omp single

21 #pragma omp task firstprivate(n) in_reduction(+ : sum)
22 fib(n, sum);

sum) ;
sum) ;

firstprivate(n) in_reduction(+ : sum)

if (n 2)
sum n;
else {
if (n < cut_off) {
fib(n - 1,
fib(n 2,
} else {
#pragma omp task
fib(n - 1,

#pragma omp task
fib(n 2,
}
}
+

sum) ;

firstprivate(n) in_reduction(+ : sum)
sum) ;

Note: we avoided

task the use of final
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Taskgroup reductions using

Implementation: Fibonacci

manual cut-off

OO~ OOUTLSE WNE

g
= o

12
13
14
15
16

void fib(int n, int &sum) {

#pragma omp task

#pragma omp task

}

if (n < 2)
sum += n;
else {
if (n < cut_off) {
fib(n - 1,
fib(n - 2,
} else {

}

}

fib(n - 1,

fib(n - 2,

sum) ;
sum) ;

In results: “taskgroup-red”

17
18
19
20
21
22

#pragma
#pragma
#pragma
#pragma

fib(n,

omp parallel shared(n, sum) num_threads(conf.num_threads)

omp single

omp taskgroup task_reduction(+ : sum)

omp task firstprivate(n) in_reduction(+ : sum) ]
sum) ; main

firstprivate(n) in_reduction(+ : sum)

sum) ;

firstprivate(n) in_reduction(+ : sum)

sum) ;

task




/ Implementation: Fibonacci
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e . Using the stack and manual cut-off In results: “stack”
1 1int fib(int n) A
2 int X, Y; 22 ...
3 23 #pragma omp parallel shared(sum) num_threads(conf.num_threads)
4 if (n < 2) 24 #pragma omp single
5 return n; 25 #pragma omp task shared(sum) firstprivate(n) .
6 else { 26 sum = fib(n); main
7 if (n < cut_off) {
8 x = fib(n - 1);
9 y = fib(n - 2);
10 } else {
11 #pragma omp task shared(x) firstprivate(n)
12 x = fib(n - 1);
13
14  #pragma omp task shared(y) firstprivate(n)
15 y = fib(n - 2);
16
17 #pragma omp taskwait
18 }
19 return x + y;
20 }

21} task
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Implementation: Fibonacci

#pragma omp threadprivate(mysum)
void fib(int n) {

if (n < 2)
mysum += n;
else {
if (n < cut_off) {
fib(n - 1);
fib(n - 2);
} else {
ffpragma omp task firstprivate(n)
fib(n - 1);

#pragma omp task firstprivate(n)
fib(n - 2);
}

}
+

1o
19
20
21
22
23
24
25
26

28
29
30
31
32
33
34

Using explicit threadprivate and manual cut-off

task

In results: “threadpriv”

#pragma omp parallel num_threads(conf.num_threads)
{
mysum 0;
#pragma omp single
#pragma omp task
fib(n);
}

#pragma omp parallel num_threads(conf.num_threads)

#pragma omp single
nthreads = omp_get_num_threads();
#pragma omp for reduction(+ : sum)
for (int 1 = 8; 1 < nthreads; i++)
sum += mysum;

} main




P Evaluation

System configuration:

LLVM/Clang 14.0 (release)
GCC 13 (code version dated 20220518)

Intel® Xeon® Skylake Platinum 8160 Processor, dual-socket, 48 cores,
(blake.sandia.gov)

192GB RAM
Flags: -fopenmp, -Wall, -Wextra, -pedantic, -Werror, -O3.

Env: OMP_PROC_BIND = close, OMP_PLACES = cores (one thread per core
with incremental core IDs)

Methodology

Each benchmark ran 5x, average time and standard deviation recorded
Generate very large task counts to accumulate overheads
Downside: tasking vs reduction overheads blend together




/ 1) Stack has lowest OH, OH with # tasks, has TW
2) TP has low OH but requires manual reduction
Eval uatlon FIbOHaCCI 3) Comparable performance

t(sec)

Time over number of tasks, N=33, 48 threads, variable cut-off, 1.2k — 11405k tasks
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/ Similar behavior of taskwait to Fib
2) Taskgroup and taskloop diverge (3), due to
Eval uatlon Powe rset differences in reduction list item lookup and
explicit task creation (taskloop)

« Time over number of tasks, N=18, 48 threads, variable cut-off, 2 - 265k tasks —
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P Evaluation: Powerset UDR

Time over reduction size (UDR), 4B — 131kB, 48 threads, 262k tasks
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1) Stack accesses causing cache faults (LLVM)
2) Differences in reduction list item look-up and
explicit task creation (taskloop)
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/ 1)  Execution with work for 48 threads
2) Parallel for is invariant as it does not use
Evaluation: Dot-product (not recursive) tasks

« Time over number of tasks, N=224 128MB, 48 threads, variable cut-off, 2 - 131k tasks

—— atomic

. threadpriv
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P Conclusion

Both compilers support task-parallel reductions as in the spec
« Performance is comparable to manually implemented and optimized reductions
* For large task counts, tasking overheads dominate (incl. taskwait)
We recommend the use of these constructs

Future work
« Evaluation of tasking implementations in LLVM/Clang and GCC

Links:
[1] https://github.com/sandialabs/openmp_task _bench
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