helpaperfdojnotlnecessarilyfrepresentfthejviewsjofftheju.S | of Energy or the United States Government.

Thislpaperidescribeslobjectivetechnicallresultsfandlanalysis JAnvlisubijective views or opinions that might be expressed in SAND2022-13337C

Sandia
National
Laboratories

Exceptional service in the national interest

Characterizing the Performance
of Task Reductions in OpenMP
5.X Implementations

Jan Ciesko, Stephen Olivier

Thursday, 29t September, 2022

UT, Chattanooga, Tennessee,

ARTNENT OF

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and NEERGY
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department

SandialNationalflaboratoriesfislafmultimission laboratory managed and operated by National Technology &:Engineering Solutions ofi Sandia, LLC, awholly owned, 5t - NYSE
International,Inc., for the U.S. Department of Energy's National Nuclear Security"Administration'under 'contract DE-NA0003525. ration under contract DE-NA0003525. e

/
p Agenda

Reductions in OpenMP

Implementations in LLVM/Clang and GCC
Benchmarks

Evaluation

Conclusion

P Reductions in OpenMP

OpenMP supports reductions since V1.0 OpenMP C and C++ Application
Program Interface
* Tasking since V3.0 in 2008 Version 1.0 — October 1998

« Demand for task-parallel reductions

2.3 parallel Construct

. . . The following directive defines a parallel region, which is a region of the program that
° I Sta rted WO rkl ng On th IS In 201 3 is to be executed by multiple threads in parallel. This is the fundamental construct

that starts parallel execution.

° Presented tO OMP LC In 201 5- #pragma omp parallel [clause[clause] ...] new-line

structured-block

¢ Proposal made It Into the SpeC In 2018 The clause is one of the following:
(OpenMP 5.0) if (scalar-expression)

private (list)

* Task reductions are conceptually firstprivate lish)
8 004-2229-001
concurrent and are orthogonal to the
depend clause
« Compiler support evaluation is important for
OpenMP C and C++ Application Program Interface Directives [2]

performance portability
* How well did we do in the spec? sefautt (shared | none)

* Did implementers implement the spec? shared (list)

copyin(list)

reduction (operator: list)

/

v

/" Reductions in OpenMP

Task reductions allow reductions computed by arbitrary task graphs

Challenge: definition of participating tasks and of the scope of the reduction computations

Clauses for task reductions:

Clause Semantic Description
Scopes a task reduction for a

il R R sieel el parallel or work-sharing

var) Participation S
region*.
: Scopes a task reduction for a
Scoping,

taskloop region and makes
created tasks participants.
Scopes a task reduction for a
taskgroup region.

Denotes participation of a task,
in_reduction(op: var) Participation target task, or taskloop in a

s . . ‘ task reduction.
« ‘task’ reduction modifier on construct only for ‘parallel’, ‘for’, ‘sections’ or ‘scope

reduction(op: var)

Participation

task_reduction(op:

var) Scoping

Rule of Thumb:

1.

Participating tasks must
have a enclosing scope that
defines a task reduction

. The reduction computation

completes by the time the
scope ends

/" Implementations in GCC and LLVM/Clang
/4

/’ I void func(int &sum) { gcc _fopenmp -c task.c
))) 2 #pragma omp taskgroup task_reduction(+ : sum) P
° Pr|Vat|Zat|On and data 3 #pragma omp task in_reduction(+ : sum) -fdump-tree-optlmlzed-
reuse 1 sum++; o task.o.gcc
5 }
1 void func (int & sum) { clang -Xclang -S -
2 struct .omp_data_s.0 .omp_data_o.1l; :
. T emit-livm -
4 .omp_data_o.1.sum = sum_2(D); Xpreprocessor-
5 __builtin_GOMP_task (_Z4funcRi._omp_fn.0, &.omp_data_o.1, OB, 8, 8, 1, fopenmp -c task.c -o
0, 0B, 0, OB); task.o.s.ll t
6 return: ask.o.s.llvm (no
7} shown)
8
9 void _Z4funcRi._omp_fn.0 (struct .omp_data_s.0 & restrict .omp_data_i) {
10 .« o 0n
11 void * D.2516[1]; // new double pointer
12 -3 = .omp_data_i_2(D)->sum; // reference to original reduction storage location
13 D.2516[0] = _3;
14 _-builtin_GOMP_task_reduction_remap (1, O, &D.2516); @ /redirect
15 sum_6 = D.2516[0]; // dereference
16 _10 = *xsum_6;
17 211 = _10 + 1; /fuse
18 *sum_6 = _11;
19 return; *GCC Version 13,
20 } 20220518

BenChmarkS ‘= README.md V4
OMP Task Bench (OMP-TB)

App| ICatIOnS OMP-TB is a collection of benchmarks to measure tasking performance and tasking-related features in
OpenMP. Currently it includes benchmark as listed below. Benchmarks in the reductions sub-directory
° F|b0naCC| target task-parallel reduction support. In general, such benchmarks are useful to evaluate compiler language

support as well as its efficient implementation.

* Powerset
* Powerset-UDR OMP-TB Benchmarks

° DOt-prOdUCt » reductions/dot (Dot Product)

» reductions/fib (Fibonacci)

» reductions/powerset (Powerset Permutations)

6 implementations each:
° Para”el task-reduction s reductions/powerset-UDR (Powerset Permutations using user-defined reductions)

» reductionsfothers/array_sum (Array Sum)

« reductions/powerset-final (Powerset Permutations using the final OpenMP clause)

» Taskloop reduction

s reductions/others/knapsack (Knapsack)

° TaSkgrOUp reduction « reductions/others/knightstour (Knights Tour)
° Manual per-thread » reductionsfothers/max_height_tree (Max Height)
data p”Vatlzatlon s reductions/others/nbinarywords (n-Permutations)
» reductions/others/nqueens (N-Queens)
* Atomics

s reductions/others/TSP (Travelling Salesman Problem)

« Stack

[1] https://github.com/sandialabs/openmp_task bench
* OMP-TB [1] contains further examples

https://github.com/sandialabs/openmp_task_bench

Y
g

rd

‘4

- Parallel task reduction using manual cut-off

OCOoOO~dNOOUE WNRE

el el el
OB WNRO®

v

Implementation: Fibonacci

In results: “parallel-red

17 main
18 #pragma omp parallel reduction(task, + : sum) \
19 num_threads(conf.num_threads)

void fib(int n, int &sum) { 20 #pragma omp single

21 #pragma omp task firstprivate(n) in_reduction(+ : sum)
22 fib(n, sum);

sum) ;
sum) ;

firstprivate(n) in_reduction(+ : sum)

if (n 2)
sum n;
else {
if (n < cut_off) {
fib(n - 1,
fib(n 2,
} else {
#pragma omp task
fib(n - 1,

#pragma omp task
fib(n 2,
}
}
+

sum) ;

firstprivate(n) in_reduction(+ : sum)
sum) ;

Note: we avoided

task the use of final

‘4

'

/

Taskgroup reductions using

Implementation: Fibonacci

manual cut-off

OO~ OOUTLSE WNE

g
= o

12
13
14
15
16

void fib(int n, int &sum) {

#pragma omp task

#pragma omp task

}

if (n < 2)
sum += n;
else {
if (n < cut_off) {
fib(n - 1,
fib(n - 2,
} else {

}

}

fib(n - 1,

fib(n - 2,

sum) ;
sum) ;

In results: “taskgroup-red”

17
18
19
20
21
22

#pragma
#pragma
#pragma
#pragma

fib(n,

omp parallel shared(n, sum) num_threads(conf.num_threads)

omp single

omp taskgroup task_reduction(+ : sum)

omp task firstprivate(n) in_reduction(+ : sum)]
sum) ; main

firstprivate(n) in_reduction(+ : sum)

sum) ;

firstprivate(n) in_reduction(+ : sum)

sum) ;

task

/ Implementation: Fibonacci

/4

'

e . Using the stack and manual cut-off In results: “stack”
1 1int fib(int n) A
2 int X, Y; 22 ...
3 23 #pragma omp parallel shared(sum) num_threads(conf.num_threads)
4 if (n < 2) 24 #pragma omp single
5 return n; 25 #pragma omp task shared(sum) firstprivate(n) .
6 else { 26 sum = fib(n); main
7 if (n < cut_off) {
8 x = fib(n - 1);
9 y = fib(n - 2);
10 } else {
11 #pragma omp task shared(x) firstprivate(n)
12 x = fib(n - 1);
13
14 #pragma omp task shared(y) firstprivate(n)
15 y = fib(n - 2);
16
17 #pragma omp taskwait
18 }
19 return x + y;
20 }

21} task

/

Implementation: Fibonacci

#pragma omp threadprivate(mysum)
void fib(int n) {

if (n < 2)
mysum += n;
else {
if (n < cut_off) {
fib(n - 1);
fib(n - 2);
} else {
ffpragma omp task firstprivate(n)
fib(n - 1);

#pragma omp task firstprivate(n)
fib(n - 2);
}

}
+

1o
19
20
21
22
23
24
25
26

28
29
30
31
32
33
34

Using explicit threadprivate and manual cut-off

task

In results: “threadpriv”

#pragma omp parallel num_threads(conf.num_threads)
{
mysum 0;
#pragma omp single
#pragma omp task
fib(n);
}

#pragma omp parallel num_threads(conf.num_threads)

#pragma omp single
nthreads = omp_get_num_threads();
#pragma omp for reduction(+ : sum)
for (int 1 = 8; 1 < nthreads; i++)
sum += mysum;

} main

P Evaluation

System configuration:

LLVM/Clang 14.0 (release)
GCC 13 (code version dated 20220518)

Intel® Xeon® Skylake Platinum 8160 Processor, dual-socket, 48 cores,
(blake.sandia.gov)

192GB RAM
Flags: -fopenmp, -Wall, -Wextra, -pedantic, -Werror, -O3.

Env: OMP_PROC_BIND = close, OMP_PLACES = cores (one thread per core
with incremental core IDs)

Methodology

Each benchmark ran 5x, average time and standard deviation recorded
Generate very large task counts to accumulate overheads
Downside: tasking vs reduction overheads blend together

/ 1) Stack has lowest OH, OH with # tasks, has TW
2) TP has low OH but requires manual reduction
Eval uatlon FIbOHaCCI 3) Comparable performance

t(sec)

Time over number of tasks, N=33, 48 threads, variable cut-off, 1.2k — 11405k tasks

10° 3 10° 3

] — stack | —— stack

atomic] atomic

10" threadpriv 10'4 —— threadpriv
: parallel-task-red :

] parallel-task-red
| —— parallel-task-red-untied

| —— parallel-task-red-untied

260 |
\\ .

k\
(66 @]
\

10° 4 taskgroup-red 10° taskgroup-red
—
' o
-4 -1 —
10 3 10 A /
10" 3 074 ~
I| L Ll IIlII|| L] L] Illlll|- L] T llII||| T L] I|l|II| I| T T |||||r| T L] IIIIII| T T IIIII1| T T IIIIIII
10° 10° 10° 10° 10 10° 10" 10° 10° 10’
Number of Tasks Number of Tasks

(a) LLVM/Clang (b) GCC/g++

—_—
N~—"

/ Similar behavior of taskwait to Fib
2) Taskgroup and taskloop diverge (3), due to
Eval uatlon Powe rset differences in reduction list item lookup and
explicit task creation (taskloop)

« Time over number of tasks, N=18, 48 threads, variable cut-off, 2 - 265k tasks —
10°4 —— stack 10°4 —— stack
] atomic atomic
1 —— threadpriv 1 —— threadpriv
o' parallel-task-red o' parallel-task-red
—— taskgroup-red - { —— taskgroup-red
taskloop-red ,’ -] taskloop-red
2 g]
: e 3 />-
i &r‘ e
10_3 3 —— 10—3 E
-4 T T TTTT T T T T T T T T T T T T T TTTTT — 10—4 LR L) LENEE LI LR LB LA | LI R | LB
N 10’ 10° 10° 10* 10° 10 10° 10’ 10" 10°

Number of Tasks Number of Tasks

(a) LLVM /Clang (b) GCC/g++

P Evaluation: Powerset UDR

Time over reduction size (UDR), 4B — 131kB, 48 threads, 262k tasks

10 3

10

stack

atomic
threadpriv
parallel-task-red
taskgroup-red
taskloop-red

/

— /
/

—

.

|||| T L ||||||| 1 T ||||||| I I ||||||| 1 L L L L
10" 10° 10° 10" 10°

Size of Reduction Variable (bytes)
(a) LLVM/Clang

10

1) Stack accesses causing cache faults (LLVM)
2) Differences in reduction list item look-up and
explicit task creation (taskloop)

g__

stack

atomic
threadpriv
parallel-task-red
taskgroup-red
taskloop-red

IIII T T L] Illlll T T T IIII'II T T I'llllll T T 1 lllTl]
10 10° 10° 10 10
Size of Reduction Variable (bytes)

(b) GCC/g++

/ 1) Execution with work for 48 threads
2) Parallel for is invariant as it does not use
Evaluation: Dot-product (not recursive) tasks

« Time over number of tasks, N=224 128MB, 48 threads, variable cut-off, 2 - 131k tasks

—— atomic

. threadpriv

O 3

;8, E —— parallel-for-red

taskloop-red /

—— taskloop-red-untied /

10 10° 10° 10 10
Number of Tasks

P Conclusion

Both compilers support task-parallel reductions as in the spec
« Performance is comparable to manually implemented and optimized reductions
* For large task counts, tasking overheads dominate (incl. taskwait)
We recommend the use of these constructs

Future work
« Evaluation of tasking implementations in LLVM/Clang and GCC

Links:
[1] https://github.com/sandialabs/openmp_task _bench

https://github.com/sandialabs/openmp_task_bench

