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Challenges of Shape Optimization

Shape gradient computation
» Finite Differences (slow, inaccurate)
» Automatic Differentiation (great if we can use it)
» Volume Method, Boundary Method (may be difficult to implement)
» Strip Method (https://doi.org/10.1002/nme.6908)
Constraint formulation
» Smoothness (may be necessary for existence of solutions)
» Symmetry; manufacturability by a given process
» Contact
Interplay with optimization algorithms
» Free-form design: large number of inequality constraints
» Limitations of a priori parametrization
Mesh quality
» Elliptic smoothing; explicit reconnection based on remeshing

» Quality-preserving metrics (V. Schulz, R. Herzog)




+ 1 Model Problem: Square to Circle

min7(@) = [ ju) da,

where u in (2a) solves the PDE

—Au = f in Q
u =0 on Of
» Initial domain (unit square): Q¢ = (0,1)?
> Tracking target: j(u) = 3(u —u.)?, f = Au, |
-
u(@)=Jo(Alz— (3 }) |2) |
» Optimal domain (circumscribing circle): I

Q*:{me]ﬁ? : |:r:—(

ba =
ba =
S—
_|
b2
A\
|
Nt



s | Shape Derivative of the Objective Function

We model perturbations of {2 using the map ‘
RY sz 24+ V(x),
where V' € D! (continuously differentiable with compact support).

The shape derivative of the objective can be expressed

dJ( V) = /ﬂ Ju(w)w' (V) dz + aﬂ(V'b’)j(’bfa) d, (22) |

where v’ is the shape derivative of the solution to (1b) (see Sokolowski and Zolesio):

{—Au’ —0 in O (2b) |

v = —(V-v)O,u on ON.
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The Boundary Method
By defining the adjoint equation

—Ap = ju(u) in Q
p =20 on 01,

we can compute

/ju(u)u’ dx @/Vp-Vu" d.’L'—/ uw'Oyp dx
Q Q o0

) (V -v)0,ud,p dz
o0

and thereby express the shape gradient entirely on the boundary:

(Gan,Y90(V) - V)cra).crn) = /{)‘Q(V -v) (j(uw) + OupOyu) d.

(3)




Let y(xz) = + V (z), and observe that

Vy=I+4+VV
det Vy =div V

I
; 1 The Volume Method m
(I-VV) ' =I+VV +(VV)? +.... |

Thus, we can differentiate the operator [, Vu- Vv = [, fv in (1b) as follows:

/ Vu'-Vv d:r:—/ Vw(VV + VVT) Vo d:r;+/ Vu-Vudiv V dz = / v(V-Vf)+vfdivV dz,
Q Q Q Q
(4)

and thus write I

fju(u)u’ dzx (i)/ Vp - Vu' dz |
0 Q

4)

/ Vu- (VV +VV ") Vp+p(V - Vf)+ (div V) (=Vu - Vp + pf) dz, |
€2



s | The Volume Method

thereby expressing the volume shape gradient: ‘
Q
+div V (j(u) — Vu*Vp-l-pf)) dzx,

The Hadamard Structure Theorem states the equivalence of the two methods:

(GBQ;’)’BQ(V) . V)Cl(aﬂ)’,cl(aﬂ) = (GQ, V>(DI)IF'D1? forall V € Dl. |

» Main idea: integration by parts
» Support of G, is contained in 0f2. I
https://epubs.siam.org/doi/book/10.1137/1.9780898719826 |

» Discretization of the volume method is equivalent to differentiation of FEM discretization
(with suitable subspace for V). I



9 | Results with Finite Element Method
Volume Method (16 iterations) Boundary Method (41 iterations)
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Hiptmair et al. showed (2015) that they are not equivalent numerically:
» Boundary method is O(h)

» Volume method is O(h?) I
» Both utilize the same adjoint equation. I




Boundary method (strong form) for shape gradients
» Derivative of solution (0,p, 0,u) plus geometric factors (V - v).
» Data is readily available with boundary element methods.

|
o | The Need for Better Terminology m

Volume method (weak form) for shape gradients
» Derivative of operator (VV,div V).
» Boundary element methods will not help us compute volume integrals!

We will consider two approaches. Both rely on solving the state and adjoint equations using |

BEM.

» Extraction method: use “extraction” to get additional required boundary data, use the
boundary representation of the shape gradient.

» Tensor method: compute operator gradients of integral equations rather than the |
original PDE.



1 1 Boundary Integral Equations

Define the integral operators K : H'/2(I') — HY2(T"), and V : H=1/2(I") = HY2(T") via ‘
1 (x—y) v 1 1
Ka::—f Y d,V:BZ—/ dy.
0(0) = 4r | e gm Wy, V@) = o | o) dy |
Can solve the integral equation
Vip=(31+ K)o (5)
for the unknown Neumann data ¥ = d,u|sq. The solution u can then be expressed via the |
representation formula
u(z) = ] G(z,y)¢(Y) — 0u,G(z,y)p(y) dy, I
Q

where G(z,y) = 1/4m|z — y| is the Green'’s function for the Laplace equation.



I
» | The Extraction Method for a Dirichlet Problem m

Consider the (slightly different) model problem |
—Au =0 in ()
u =g on Of.
1. Solve V(8,u) = (I + K) g for d,u.
2. Solve V(8yp) = (31 + K) ju(u) for dyp. |
3. Evaluate the boundary shape derivative (plus additional terms with j(u) on the boundary):

/ (V -v)0,pd,u dx. I
ol
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3 | The Extraction Method for a Neumann Problem m

Now with a Neumann problem

{—Au =0 in Q ‘

O,u = g on Of), |

things get more interesting. The shape sensitivity equation corresponding to (2b) now reads:

—Au' =0 in Q
g (6)
opu’ = divp((V -v)Vru) +kg(V -v) on 09, |

where k is the mean surface curvature.
» This only makes sense for smooth surfaces. I

» Tangential derivatives Vru can be computed via extraction approach of Schwab and

Wendland (1999). |

» Compute tangential derivatives of ¢ = u|r (in local coordinates, with A = 1T — K):

App = =Vihy — Ay — Viw - i



|
2 1 Another Look at Operator Derivatives @!

Let {¢; :i=1,..., Ny} be a nodal Lagrange basis for the FEM subspace V},. Then with |
Ny,
un(@) = Y Uipi(a), ‘
=1
the state equation (1b) can be discretized as
KU =F (7)
where |
K; =/ Vi Vy; dz, I
Q

Fi=/ foi dzx.
)



s | The Discrete Sensitivity Equation

Assume there are S}, = 2N;, nodal coordinates corresponding to shape variables sy, ‘
k€ {l,...,Sn}. The discrete shape derivative of K for k € {1,...,Sxr} is |
0K,
(K")iji = 33:‘

Using this notation, the discrete shape derivative of (7) is
K'U+ KU' = F', |
which can be rearranged into the discrete shape sensitivity equation I
U=K '(F -KU). |



6 | The Discrete Adjoint Equation

With the discrete derivative of 7 (2) written

Gi = / Ju(un)pi dz, ‘
Q

the discrete shape sensitivity equation |

U =K " (F -K'U)

can be used to form the objective function gradient |
G'U=G"'K™'(F -K'U),
——
—pT I
where the adjoint state P solves K P = G. |

» These last few slides have been written for FEM, but apply equally well to BEM.
» The challenge in the BEM case is to compress the tensor K. I
» My paper with Mario Bebendorf (2013) shows how to do it. I



17 1 Conclusion

Most literature on shape optimization with boundary element methods sticks to cases where
extraction is not required, and everything can be computed on the boundary.

» The extraction approach usually requires more analytic work, plus the solution of
additional integral equations.

» The tensor approach is general, but requires compression infrastructure.

» Both approaches require numerical integration of the same singular kernels. |

No one has addressed their accuracy as Hiptmair did for FEM:
» Accuracy of boundary data computed with BEM.
» Accuracy of extracted tangential and higher-order derivatives. I

» Can Hiptmair's analysis be extended to this case? I



