
Sandia National Laboratories is a 
multimission laboratory managed and 
operated by National Technology & 

Engineering Solutions of Sandia, LLC, 
a wholly owned subsidiary of Honeywell 

International Inc., for the U.S. 
Department of Energy’s National 

Nuclear Security Administration under 
contract DE-NA0003525.

USEFUL THINGS WE LEARNED ALONG 
THE WAY
Commonly used components in one application

Greg Arnold –  Sandia Nat ional  Laborator ies

Bob McCarthy – Sandia Nat ional  Laborator ies

NLIT Summit 2022

October 16 -19, 2022

Albuquerque, New Mexico 

SAND2022-13350CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Introduction – Who are we?2

Bob McCarthy – Software System Engineer

• Currently been working at SNL for 6 years
• Over 35 years of development experience working for New Mexico State University, 

Westinghouse Corporation, Texas Utilities, Blue Cross/BlueShield, Computer 
Systems Development, Intel Corporation

• MBA – University of New Mexico
• BBA – New Mexico State University

Greg Arnold – Software System Engineer

Gregory Arnold is a software developer with over 25 years of experience. He has been working at 
Sandia National Laboratories for the last 13 years, developing innovative web applications for 
mission support. He has experience with many programming languages, but loves Python the most. 
He has BA and MA degrees in Linguistics. He enthusiastically advocates Agile methodologies. His 
favorite advice to new developers is “Why do it the easy way when you can do it the hard way.”



Introduction – Things we learned along the way

• Architecture, Technology Stack and Data Flow

• Token-based security for communicating between web services

• Logging framework for tracking user actions and errors

• Workflow notifications and email for facilitating status-based business processes

• User security pipeline for managing online user presence and caching

• CI/CD Pipeline

3



Architecture 4



Technology
• Microsoft .NET Core Stack

• Service Injection
• Middleware Request Pipeline
• Global “Usings”
• Configuration (Application settings files)

• Entity Framework
• Database Context
• LINQ

• Microsoft SQL Server

• Model-View-Controller (MVC)
• View Components
• Tag Helpers

• wwwroot
• jQuery/JavaScript
• Bootstrap
• Cascading Style Sheets (CSS)

5



Data Flow6



Token-based Security for Web Services - JWT

• JSON Web Tokens

• Request Header

• Security Web API Token Request

• Client Authorization Policies loaded at Resource

• Resource Web API Authorization using Bearer scheme

• Token unpacked and validated against calling Client

7



Token-based Security for Web Services - JWT8

Client

1

Security2
Web 
API

3



Logging Framework

• Two uses of logging
• Errors
• Audits

• Resource throws error to client

• Use Middleware Request Pipeline to catch error

• Custom Exception logged from Client application

• User events logged directly for auditing

• Log details are inserted into database

9



Logging Framework10

Add CustomExceptionMiddlewareExtension class:

Implement CustomExceptionMiddleware class:

Startup Class:
app.UseCustomExceptionHandler("EBIPortal", 
"Core MVC", "/Home/Error"); 



Workflow Notifications

• Workflow Step Initiated (New Status)

• Notification Data Retrieved
• Notification Template (html)
• Recipient List
• Parameter Data

• Parameters Merged with Template

• Email Constructed for Recipients

• Notification Sent

11



Workflow Notifications12



User Security Pipeline

• Use Middleware Request Pipeline to Authorize User
• Get User Information
• Get  User Role Information
• Cache Online User in memory
• Create Timestamp (update when user is active)
• Invoke Timeout when inactive for configured time period (e.g. 20 minutes)

13



User Security Pipeline14

Startup class:
app.UseWhen(context => !context.Request.Path.StartsWithSegments("/Timeout"), appBuilder => { 
appBuilder.UseUserSecurityMiddleware(); }); 

Add UserSecurityMiddlewareExtensions class:

Implement UserSecurityMiddleware class:



CI/CD Pipeline15



Summary

• Reusable architecture and structures

• Faster project startup time

• Previously tested and reliable components

• Manageable framework that uses simplified development patterns

• Code structures facilitates debugging complete stack

• Simplifies maintenance effort

• Distributed code base reduces memory footprint

• Use of middleware pipeline allows consistent user security, logging and workflow 
implementations

• Puts the fun back into development!

16



Q & A

If you ask me anything I don’t know, I’m not going to answer. – Yogi Berra

17



Contact Us

Bob McCarthy – robmcca@sandia.gov

Greg Arnold – garnold@sandia.gov

18

mailto:robmcca@sandia.gov
mailto:garnold@sandia.gov

