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> | Background

* Need for inexpensive, safe, reliable, high-

capacity batteries for grid storage
* Li-S is high capacity and low cost

* Increasing to grid scale requires a change

in cell design

Lit

S + 2e~ + 2Lit-Li,S

Energy density plateaus beyond 5 mgg cm-?

Wu, J., et al. (2021). Adv Mater
33(26): e2101275.




s 1 Flow Cell Design

« Hybrid design with solid Li metal anode

. catholyte * S is chemically reduced with RM
electrochemical cell reservoir

* Electrolyte containing RM* is pumped
into electrochemical cell where RM* is
reduced

Discharge:
RM Li*

N

Echem cell Reservoir
Felt: RM*™ + e~ - RM 1)2RM + S - 2RM™* + §2-
Metal anode: Li— Lit + e~ 2) $2~ 4 2Lit - Li,S

carbon felt U

RM*

Meyerson, M. L.; Rosenberg, S. G.; Small, L. J., ACS Applied Energy Materials 2022, 5 (4), 4202-4211.



+ 1 Flow Cell Design

electrochemical cell

catholyte
reservoir

carbon felt

Benefits:

Improved safety

« Separation of anode and cathode
decreases risk of thermal runaway

Decreased cost

* No need for ion selective separators or
excess carbon

« Scalability
* Increased S loading without hindering
diffusion

Meyerson, M. L.; Rosenberg, S. G,; Small, L. J., ACS Applied Energy Materials 2022, 5 (4), 4202-4211.



I Cobaltocene and Decamethyl Ferrocene as Redox Mediators

DmFc |

Current (normalized)

2.0 | 25 | 3.0
Potential (V vs Li/Li")

CVs taken at 10 mV/s in 1M LiTFSI 1:1 DOL:DME, glassy carbon working
electrode, Pt counter electrode, Li reference electrode.

|deal Redox Mediator

Close to Li-S reaction (~2.4 V vs

Li/Li*)
Epnr.= 2.86 V
Ecocp = 2.06 V

Good reaction kinetics
K mee = 4.33 x 103 cm s
kococp2=3.14 x 10 cm s

Fast diffusion
Domee = 523 x 106 cm? s
Dcocpz = 3.70 x 10° cm? 8™

o

Meyerson, M. L,; Rosenberg, S. G.; Small, L. J., ACS Applied Energy Materials 2022, 5 (4), 4202-421 1.|



6 ‘ Flow Cell Cycling

* High coulombic and voltage efficiencies
* Increasing S loading increases capacity
« >60 h discharge time shows viability for long

duration storage.
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Meyerson, M. L,; Rosenberg, S. G.; Small, L. J., ACS Applied Energy Materials 2022, 5 (4), 4202-4211.
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. I Limitations of Planar Li Anodes

Li deposition

] ". .l-l_

Li dendrites

Dendrites decrease battery life and cause

short circuits.

Causes of dendrite formation:
* Inhomogeneous surface chemistry
* Non-uniform Li* flux

* Increased charge rate exacerbates
problems with dendrites




¢ 1 Addressing Limitations of Planar Li Anodes

Non-uniform Li* flux Limited charge rate
« Use a flow field with more uniform electrolyte * Replace planar Li foil with high surface area
flow Ni foam
« Switching from open to serpentine flow fields * Ni foam with 97% porosity has ~10x the
increases uniformity of electrolyte flow surface area of planar Ni foil

Bare Ni foam

Increasing effective surface area
decreases the local current density. |

More uniform flow leads to more uniform
Li deposition.




9 I Effect of Flow Field Design
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10 I Effect of Flow Field Design

Serpentine flow field outlet
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More uniform flow leads to more uniform Li deposition. I



1 1 Moving from Planar to 3D Anode Scaffolds

o

- Symmetric cells with Li foil counter electrode and Ni foil or foam as current collector for

working electrode

* Test coulombic efficiency at increasing current densities
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Test procedure: Adams, B. D.; Zheng, J.; Ren, X;; Xu, W,; Zhang, J. G., Advanced Energy Materials 2017, 8 (7). I



2 I Increased Surface Area Allows Faster Charging

« For planar deposition, charging above 1 mA cm results in unstable cycling and shorting

Ni foil at 5 mA cm2 for 0.5 mAh cm™ Ni foam at 10 mA cm2 for 0.5 mAh cm™
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Using high SA foam, charge rate can be 10 times faster.




3 I Increased Surface Area Allows Faster Charging
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14 | Zn0O Synthesis on Ni Foam

« Lattice mismatch leads to nucleation overpotential
* Li has a lower nucleation overpotential on Zn than Ni

. [ ONucIeation overpotential |
10 mA cm™
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Time (h
Hydrothermal synthesis of ZnO nano rods — .Ime.( ). —
* 100-150 nm wide, 500-800 nm tall =§;O
* Uniform coverage of Ni R
s
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SEM of ZnO nanorods X-ray diffraction of ZnO nanorods on Ni foam

Synthesis procedure: Sun, C; Li, Y. Jin, J; Yang, J., Wen, Z., J. Mater. Chem. A 2019, 7 (13), 7752-775



s 1 Seeding Li Deposition

Nucleation overpotential of Li on ZnO is lower than Ni, leading to preferential Li deposition on

the ZnO.

Li deposition at 1 mA cm-2.
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16 | ZnQO Further Improves System

Nucleation overpotential decreases and CE increases compared to bare Ni foam at low current densities.
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ZnO decreases the nucleation overpotential and improves coulombic

efficiency.
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7 I Flow Cells with ZnO on Ni foam
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s 1 Conclusions

* Li-S chemistry can be adapted to work in a flow
cell architecture.

« High surface area scaffolds increase the
maximum cycling current density 20x.

« Serpentine flow field improves uniformity of Li
deposition.

Li-S is a promising chemistry to use for high capacity, long duration, grid-scale energy

storage.




Can we improve the system further?

Evaluate bio-inspired flow fields for Li-plating uniformity. ‘
Scale up Li-S flow cells to ultra-high S loadings.

Improve capacity utilization of cells with 3D-Li anode at higher rates. |

Start cells in discharged state using Li,S instead of S.

Sauermoser, M,; Kizilova, N.; Pollet, B. G,; Kjelstrup, S., Frontiers in Energy Research 2020, 8. I
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