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_,/ Taylor impact testing: a simple and robust technique
' to study dynamic behaviors
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' Experimental Setup
T | ! at LANL
! FEM Approximation

Evacuated container chamber
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H. Lim, et al., Scientific Reports (2018)
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/" Modeling BCC metals & recent efforts

7 Many possible slip systems
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/" Dislocation dynamics vs. Finite element method
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Dislocation Dynamics (DD) y | Finite Element Method (FEM)
- Detailed defect interactions | ~ |+ No microstructural information
 Limited geometries « Any arbitrary geometry
- Stationary geometry | + Evolving geometry
« Small deformation L * Large deformation
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|- Multi-physical phenomens




/" Dislocation dynamics + Finite element method
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Defect dynamics element method (DDEM)

* Detailed defect interactions

* Any arbitrary geometry

 Evolving geometry
 Large deformation

* Multi-physical phenomena

P.C. Nguyen et al. (To Be Submitted)
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Defect dynamics element method (DDEM)

Concurrent Coupling Uniaxial Microcompression
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Model setup (7a):
» Sampledimensions:D ~ 1.6 um, L ~ 9.5 um
- Initial velocity: vy = 150m/s

« Slip systems: {110}/<111>, {112}/<111>

Temperature dependence:
* Heat from plastic dissipation (adiabatic)
» Dislocation mobility law - v(ea, T)

» Dislocationnucleation - G.(a,T)
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Modeling Taylor impact using DDEM
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DDEM Results
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Dislocation localization at the impact foot causes stress to relax with limited propagation
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DDEM Results - Anisotropy
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Anisotropy
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Resolved Shear Stress
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Resolved Shear Stress
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« By including shear stress, impact foot shapes
can be better predicted

« {112} planes are preferential slip systems with

Resolved Shear Stress

{110} planes being activated next
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DDEM Results - Initial dislocation density
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« Higher dislocation content relaxes stress at the impact foot




/ Inelastic heat fraction

DDEM Results - Temperature
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« Ta single crystals displayed strong plastic anisotropy during Taylor impact tests

* By concurrently coupling DD and FEM, DDEM can help gain insight on detailed
plasticity during Taylor impact

- DDEM can qualitatively predict the anisotropic response observed in experiment along
with the effect of initial dislocation density and temperature

« Further work is needed to model larger sample sizes comparable to the experiment







