

Autotuning E3SMv3

Benjamin Wagman, Drew Yarger, Lyndsay Shand, Kenny Chowdhary, Andy Salinger
Sandia National Labs

- **Motivation:** Expedite and formalize E3SMv3 tuning.

- Identify an optimal tuning parameter set for the atmosphere to assist expert model tuning.
- Identify plausible alternative parameter sets.
- Timeline: 6-12 months after code freeze in early 2023.

- **Setup:**

1. Sample E3SM by running 100's of E3SM forward simulations with ~5 perturbed tuning parameters.
 - Prescribed present-day SST, ~5-10 yrs.
2. Create a surrogate model.
 - Input: uncertain E3SM model parameters.
 - Output: climatologies of E3SM spatial fields on a 2-D grid.
3. Optimize and calibrate parameters by sampling the surrogate model
 - Identify parameters that minimize the cost function between surrogate-predicted spatial fields and observational fields
4. Confirm parameter selection by running surrogate-predicted optimal and alternative parameter sets in E3SM.

Expert manual tuning	Automated tuning
Time-consuming (6-12 months)	Less than 6-12 months
Deterministic: one set of “tuned” parameters per model release	Probabilistic: a distribution of parameters per model release OR observational target
Non-reproducible	Reproducible
Computationally expensive	Computationally expensive (upfront only)

Prototype problem using E3SMv2

Prototype problem

- N=250 10-year E3SMv2 simulations, 5 uncertain atm. parameters
- Surrogate construction using PCA and polynomial chaos

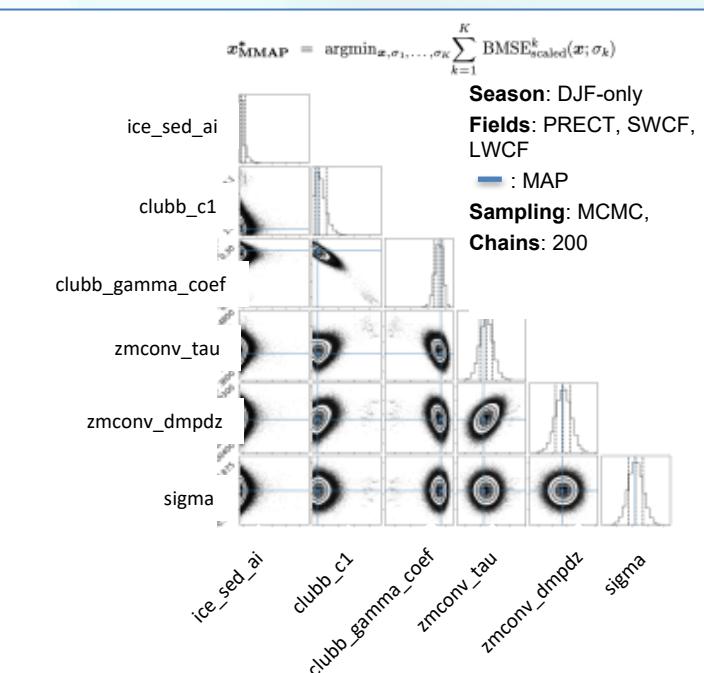


Figure: Corner plot of E3SMv2 parameter calibration against observations.

Capabilities

- E3SMv2 parameter sampling (LHS) and ensemble generation using Dakota¹
- Surrogate construction for E3SMv2 spatial fields using machine learning and reduced order modeling
- Deterministic and Bayesian calibration for uncertain E3SMv2 parameters against an unlimited number of combined spatial fields
- Visualization as a function of atmosphere parameters

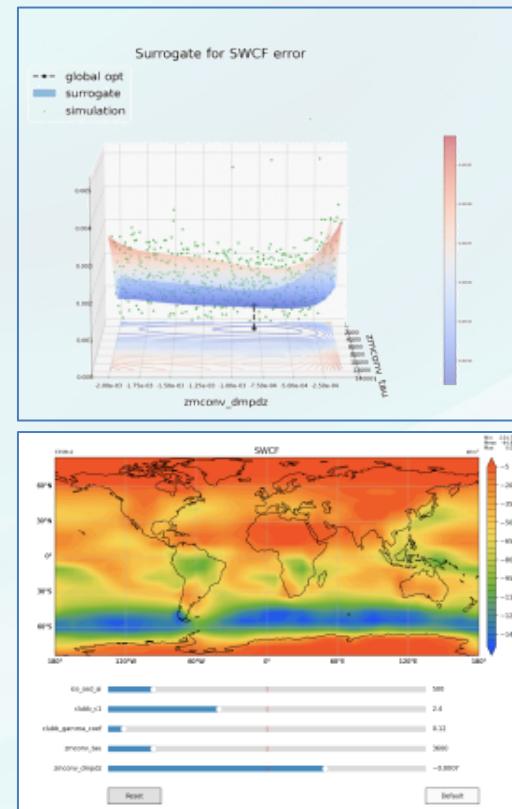


Figure: E3SMv2 SWCF error as a function of two E3SMv2 parameters as predicted by the surrogate (surface) and a ultra-low resolution configuration of E3SMv2 (green dots).

Figure: Screen shot from interactive visualization of fields as a function of E3SMv2 parameters.

Challenges

- Optimization
 - Surrogate errors are relatively large; multiple optimizations are needed to derive a parameter set with skill equal to the expertly tuned E3SMv2
 - Currently working to improve surrogate accuracy by experimenting with the surrogate construction loss function
- Calibration
 - Simple MSE-based objective function assumes fields and grid points are independent and model has no structural bias

More information

- B. Wagman, K. Chowdhary, A. Salinger. *E3SM Atmosphere surrogate construction and calibration using machine learning and reduced order modeling (talk)*. SIAM UQ, April 2022
- Ensemble and surrogate software: <https://github.com/E3SM-Project/Autotuning-NGD>