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* |ntroduction

* Detection using clock signatures
— Algorithm development
— Simulation results

— Hardware validation

* Localization with multiple receivers
— Range estimation
— Azimuth and elevation estimate

— Least squares position solution
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* Detect and localize the source of an inauthentic signal
using clock signatures

— Detection methods are independent of receiver location or
signal geometry

— Detect deviations in clock bias or drift
— Use deviations to estimate pseudoranges
— Localize the transmitter of the signal

 Compare results for different types of inauthentic signals
— Spoofer —time based attack with no change in position
Psp = Tssp T Tspu + cby, + Clyroc t Clegry +1+T +1

— Meaconer — full position replacement (repeater)

Pm =Tsm + Tmu T by +clyroc +1+T +1

tproc Processing delay

3 — tety controlled delay
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Clock Model

* Evaluate algorithms using clocks of * Two state Clock Model

various qualities [5‘ 0 1 [ ]+| “ ]
— Four clocks tested (two crystal, two atomic) bl 10 0

— H,— frequency white noise * Discretized process noise matrix Q.x

_ _ [H 2m%H_ 2m*H_ T
H_,— frequency random walk TUM n : 2 A¢3 : 2 A¢2

Qe =

— CSAC 2m*H_, "
== Quartz Oscillator Tﬂt 2meH_,At

Typical Rubidium
- GPS

Allan Deviation, o [T]

RMS Clock Error / Averaging Time

ol i A fgmiiiiis  f g il

fT v e e | W ik

52 2, BT

A e hy=2x 107 Ry=TaM -~
1 10 10? 10° 10¢ 10° 101 IR N R

10-% 10! 10 10 10°

4 Averaging Time, t[s] [1] Averaging Time (s) [2]
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Clock Parameter Estimation

>

* Kalman Filter used to estimate clock bias and drift 003 o
— Assume no change in position 002 [ R e e Doppler Eror
— Assume minimal change in atmospheric effects over short periods o1 [l
* Clock Drift estimate using pseudorange rate g o
— Instantaneous Doppler measurement 5 001 gy
-0.02
p' = DA = n 1 -0.03
. ﬂr‘ -0.04 - - - -
Cb — D/.{ _ 0 20 40 ESDTimew:BO 00 20 0
— Delta Carrier Phase measurement 05 Residuals - Rx = CSAC.
. : - 04r | I;lupplerrrtllErrmr
A¢ _ Ar'tedb A l
o == —_— 0 TTr, LA e Ny - T ]
At At At 02
j A{:JL A,r.?- -g 0.1
CO = — Py
At At
0271
03 “b
o o GA/LAB
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* 50 Monte Carlo runs per simulated test for both scenarios

e Static Simulation * Dynamic Simulation
* Five static receivers in a pyramid shape * One receiver going in a circle around the
— Four at same altitude meters apart diagonally emitter
— Fifth in center meters above others — 100 Meter radius
— All receivers have same quality of clock — Completes one rotation every minute
— Constant altitude
Rx
50 meters \
.............. RX
v
/50 meters /
o ~b
R Rx GA/LAB
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Single Receiver Detection Methods

Meaconer after outage

Residuals - Rx = OCX0, Tx = TCXO, Meas = dop

* Innovation Filtering

Sample results plotted R
— Instantaneous error _ , - E
- , _ with respect to time
— Normalized innovations outside of 3
sigma bounds {
Clean signal after outage wu“
6zk - Residuals - Rx = OCX0, Meas = r.lup. ol
yk = = 3 0.04 F i . jr:n 0.18
v Cazk 0.03 | a2
* Innovation sequence monitoring 3 ” e )
. . Time spoofing after outage
- SlOW growing errors over time W . Residuals - Rx = OCXO, Tx = TCXO, Meas = dop
1 k T "JM | 01k
k - ’Ll k > / N Dsu 'Jlu -llu bl" 5:'1 11 zL. |-';u =
N Zl | ‘ N _ Lhmr_- |_-,ﬁ- - E | .
7 15

Time (=)
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Single Receiver Detection Results

. . . . I ion Filtering Resul ith Spoof
* |nnovation Filtering detection results and trends: nnovation itering Resuts With Spoofer
Meas. Tx Fault Detection % False Alert %
1. Higher false alert percentage for clocks with higher frequency ) Rx =3 OCXO | Rubidium | OCXO | Rubidium
noise (CSAC and Rubidium) % TCXO 100 100 17.2 71.2
. ] ] ] ﬁ()c OCXO 76.4 97.2 17.6 78
2. Higher detection percentages for atomic clock receivers than 3 CSAC 100 100 152 736
crystal oscillators receivers Rubidium | 100 100 22.4 76.8
3 Easi d . ] h h h f . Rx=3 OCXO0 Rubidium OCXO0 Rubidium
. Easier to detect a transrmtter with a !g er frequency noise " m— o o5 "y >
clock (such as CSAC) using a delta carrier phase measurement 2 0CXO 80 99.6 24
. . . . e CSAC 68.8 81.2 0.4
[ J .
Innovation Sequence Monitoring detection results: T s - o e
1. Lowest detection percentage of all methods tested Innovation Sequence Monitoring Results with Spoofer
2. Higher detection rates for transmitter clocks with larger Meas. T Fault Detection % False Alert %
. Rx=3 OCXO Rubidi OCXO Rubidi
frequency random walk (TCXO and OCXO) with Doppler . > il ——
= TCXO 100 100 0 0
measurements S 000 p . . 5
3. False alerts only occurred when using TCXO which is the worst 8 CoAC 100 100 0 0
I kt t d Rubidium 26 2 0 0
cloc este Rx=3 0OCXO Rubidium 0OCXO OCXo
5 TCXO 98 100 0 0
§ 0CX0 30 100 0 0
e CSAC 16 64 0 0
8 Rubidium | 26 60 0 0
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Multiple Receiver Detection Method

Residual Variance Analysis - Rx #=5, Rx=0CXO0, Tx=TCXO, Measdop

* Multiple receiver variance

— Variance of all receiver residuals for same channel

-
=
dn

— Mean of all variances

— Divide by the residual covariance

Error Variance (m‘?fsz)

— Fault if innovation is greater than arbitrary threshold

value TS i
. 1 2 0 5Iu . 1clm 150
7 — E E [(52 _ 52— ) ] Time (s)
5ZR,I‘JC' k t Lrx LrXx Residual Variance Analysis - Rx #=3, Rx=0CX0, Tx=TCXO0, Measdop
= /’//-. | Error Coariance |
2
52.‘( rx 104
SZR

Error Variance (mzls‘?)

* Plot shows a moving mean of the variances for all
50 samples

GA/LAB

—_——

. .
50 100 150
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Multiple Receiver Detection Results

* Full table of results at the end of the presentation

b Th re5h0|d Value Of 2 for a” tests Multiple Receiver Variance with Spoofer, TS = 2
Meas. Tx Fault Detection % False Alert %
* Notable results and trends: =3 | 000 | Rubidum | 0CXO | Rubidium
1. Higher frequency noise results in higher false alerts E Tex0 0 100 ° >
. h d I . h ‘r)u OoCcxo 28 100 4 98
with a delta carrier phase measurement £ Conc . o8 , ot
2. False alerts are minimal for the crystal oscillators that Rubidium | 14 100 2 98
have |Ower frequency noise Rx=3 OCXo Rubidium OCXO0 Rubidium
5 TCXO 100 100 0 0
3. Doppler detection percentages are higher for all clock 3 ocxo 100 100 0 0
o
combinations with minimal false detections ° CsAC 100 100 0 0
Rubidium 100 100 2 0

10 = —— o
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Hardware Setup

* Spirent GSS9000 was used to generate true receiver
signal data and meaconer location data

— Both truth data and meaconer data was recorded
using N210 USRPs — record start time the same for

both (to cps = tomeac)
* Playback tests done with three N210s — one L._,m ——
receiver, one meaconer transmitter, and one GPS T—
truth transmitter : h+‘1,l____,_ S
— GPS truth and receiver sync’d to same clock = e
* Signals passed through attenuators to block s e ]_h l .
unwanted signals at given times =S s s

10MHz Ref

— Since both meaconer and truth were recorded at the
same time, both USRPs were started at the same
11 time during replay
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Hardware Detection Results

* Multiple Receiver Variance results plotted as * Innovation filtering results plotted for clock
innovations over time bias and clock drift residuals
* Empirically selected threshold value of 2 based .

Binary plot (1 is a fault, 0 is no fault)
on simulation data

Innovation Filtering Clock Bias Faults
Multiple Receiver Variance

1015 F ' I I ' ‘
1 1| |__,i'.L Innovation
| 1 | Threshold =
i 1 205
| |
| |
10 L
10 | 1 0
i i . . . . .
| | ,I 0 50 100 1 150 200 250 300
S : : | \J I Time|s)
5 | !
g 10°f i i | || ‘ Innovation Riltering Clock Drift Faults
£ 1 i |
f Lt |
£ 1 | - |.x ._ I.IJ - 1
[| 1 | 4 I
H I : . I
=3
0 E m 0.5 I
10 | /nl N.J“'ﬂll A | "-va""\..h_d.u"'" \‘I:‘.I‘! : L I
W
Outagel y Outage . ' -
Start : : End i i I I ! I i i
5 . , , , , 0 50 oo 1 1sd 200 250 300
% 50 100 150 200 250 300 I Time ls)
Outagel I Outage
12 Time (s) :

Start End



Transmitter Localizer
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 Two large sources of error
— Inaccurate initial position estimate
— Geometric dilution of precision (GDOP)

* Three step process
— Range estimation using clock bias jump
— Initial estimate filter

* Azimuth and elevation estimate at the range
distance from one receiver

— |terative least squares
* Attempt to remove the transmitter clock bias

* Address geometric uncertainty by using
varying state vectors

13

Rx

Rx

Rx

Pseudorange

Tx

“ Estimates from
" filter

Clock Bias

True range

L

‘ Best Estimate

GA/LAB
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Initial Estimate Filter

* Initial estimate for least squares Azimuth and Elevation Filter

600

0 Receiver
L Transmitter
D Estimate

 Samples are at the range estimate
distance from one of the receivers

400

200

* Deterministically sampled = o
azimuth angles (blue) N 200
* Best azimuth angle is evaluated at 0
different elevation angles (green) PN
500
D —
5 _ —~ 600
Y(m) 500 N 200 O 200 400
600 400 X(m)
GA/LAB

14 = —— o
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Simulation Localizer Results — Static Scenario
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* 3D Localizer m * Directional error

Azimuth Error Distribution Elevation Error Distribution

3D Localizer NED Results 0.25 0.1
500 . [-]
[0 Receiver
goof| H True : . n 0.1}
Uncertainty Vector 0.2r
Estimates
300
; | 0.08 |
200 1 ,0.15
E E 0.06 |
£ 100+ 8
= =
— “ 04
Or . 0.04
-100 + 0.0571 1
0.02
& 0 - 0l
-300 L L L L L L L | 0 2 4 3 2 4 0 1
-300 -200  -100 0 100 200 300 400 500 Angle (deg) Angle (deg)
East(m) —
Tabulated| Rubidium (shown) OCXO0
Results |Azimuth| Elevation [Azimuth|Elevation ~y,
Mean [-0.0318| 0.0100 | 0.1641 | -0.0482 GA/LAB
15 Std. Dev. | 0.5012 | 0.4441 | 1.5370 | 2.3623 =A——e
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Geometric Uncertainty Improvements

* For certain geometries, the range < Different localizer states to improve

bias error and position errors scale Dilution of Precision (DOP)
proportionately in a certain e 2D localizer
direction

— Remove altitude uncertainty
* Results in a vector with all points « No bias estimate

along vector equally likely to the
least squares estimator
2 2

— Each iteration slides along vector and 9
ny {Ty Jyz O‘yb

never meets criteria to end the H=(G"e)'=| 5 .

. . Oxz Oyz 0Oy O,p
Iteration > ) > 2
O xb be Ozp Op |

1
2 2 2
Oyp T+ Tyb + 0,
16 = ——1 =

— Removes range uncertainty

[ 2 2 2 2 7
Ox ny Oxz Oxp

uv=" “ [Ufb: Oybs Jz?b]T i
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Simulation Localizer Results — Other Localizers

. . X . N
* No bias estimate H * 2D Localizer |,
* Better accuracy than original e Slightly moreaccurate than original

 Vulnerable to biased ranges

2D Localizer NED Results

3D No Bias Localizer NED Res
500 . uﬁ 500 []
[0 Receiver . 0 Receiver .
400 + [0 True | | 400 | 0 True
. Estimates . Estimates
300 r 300 -
200 r 200 r
E E
£ 100+ £ 100t ,
c o
= =
0 rl ol %
-100 | -100 ;
-200 -200
_300 1 1 1 1 1 1 1 ] _300 1 1 1 1 1 1 1 ]
-300 -200 -100 0 100 200 300 400 500 -300 -200 -100 0 100 200 300 400 500 AB

17 East(m) East(m) yoe
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Simulation Localizer Results — Dynamic Scenario V2
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* 3D Localizer * Uncertainty vector isolated to

1D Localizer NED Resuts altitude rather than distance
- — Orthogonal to the plane of
. f receivers
. - s . * Converged to a solution with
: 0 R % | 25% of range measurements
. GA/LAB

= —— o



. . . . PAST AUBURN
Simulation Localizer Results — Other Localizers Ve
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: . X , N
* No bias estimate H * 2D Localizer |k
zl . : b ,
* Converged to an estimate with * Altitude error is due to propagation

100% of estimates

3D No Bias Localizer NED Results

of a biased pitch measurement

2D Localizer NED Results
[l Receiver

] True [J Receiver
e . Estimates O True
& *  Estimates
300 —
200 . '-;" . 300 '
100 ' s 200 - v
- vt i [, o
£ SR -2 100 a [].
% 0 — . art R E ~f - .
M ! = 0 ™
2 100 4 i §
2.
o -100 —
-200 o g
P 7 200 200
B0 0
B0 200 4T T < 300 7 —0
0 100 T 20 300 T ——
200 300 East(m) 200 400 0 > -
100
North(m) 200  3q9 East(m) AB
North(m)
19 (
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* Simulations show high detection rates with low false alerts for
certain detection methods

 Hardware validation shows it is possible to use the same detection
techniques and detect an inauthentic signal

* Localizer algorithm can accurately estimate the transmitters
direction

* Localizer accuracy is scenario dependent and a combination of
multiple methods may help overcome geometric issues

GA/LAB
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Questions?

Thank You!

GA/LAB
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