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Research Goals

develop global strategies for controlling complex physical systems
provide actionable control information in real-time

identify a general framework adaptable to diverse system dynamics
and flexible enough to account for practical constraints on actions
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Challenges

reliance on computationally demanding forward models

limited number of data requests available due to complexity
problem parameters and input conditions are unknown until the
event commences and an immediate response is required
infinite dimensional space of system configurations and policies

Model Environment for Reinforcement Learning

PDE System
— +Vvy-Vu—-D-Au = fe,, —a in Qx][0, T] with D=0.5
u=0on {x=0tU{y=0}U{y=1} and %2 =0 on {x=1}

Source Term and Velocity Field

fe w(x,y) = 5.0/0-exp(—(|x —&|+ |y —w|)/o) with o =0.01
where & ~ Uniform(0.1,0.25) and w ~ Uniform(0.1,0.9)

vs(x.y) = ( 2 — 8 sin?2r - [x— ¢]) . —p-sin(2r - [x — ¢]) )
where n=125, §=0.75, and ¢ ~ Uniform(0.0,-0.3)

Control Decision

Select an action A; = [r:, v¢] for adjusting the initial magnitude My = 0.0
and initial position Py = 0.5 of the sink expression a(x, y, t) given by:

a(x,y,t) = Me-exp(=(|x = 0.6[/ox + |y — P|/oy))
Mt_|_1:Mt+rt‘At and Pt_|_]_:Pt—|—Vt‘At

Objective function for model environment
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Outcome of Event Cost to Act

Reinforcement Learning with Actor-Critic Models

* an actor network is tasked with proposing control actions at each
time-step based on the current system state

* acritic network is trained to predict the long-term value/outcome of
the system based on the current state of the environment and actor

* the actor must refine its decisions to outperform the critic’s prediction

Proximal Policy Optimization (PPO)

Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).

* avoid over-tuning during training using trust-regions to select step-size
* move cautiously if feedback is positive, move decisively if negative

Training workflow and neural network architecture
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RL Agent

The RL agent is trained through Actor loss for PPO

repeated interactions with various

environment realizations by: Told 1 -~~~ - 5 ADV = G — V(&)

1) estimating the value V, of the .

( positive ~ improved action )
current system state S, (critic) |

negative ~ worse action

2) proposing an optimal course of » —p- ADV ~_

action A, at each time step (actor) — 7 = w4 MAX Lossa

> —clip(p,1 £ ¢€) - ADV e

Outcomes using the control policy prescribed by a single net

Solution att = 1.000 Solution att = 1.000 Solution att = 1.000
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A single trained agent can quickly produce effective containment strategies for a
variety of distinct problem realizations without referencing the forward model.

Search Space Complexity

* 3 continuously varying environment parameters which each
have a notable effect on the overall system dynamics

» unlikely to see the same realization more than once

* 25 actions must be selected sequentially for each realization

» curse of dimensionality as number of time-steps increases

* search is performed using the scalar-valued objective alone

» no gradient information or system knowledge

Local versus Global Solutions
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* Jocal methods apply to a single realization of the system and
require repeated simulation calls once parameters are known

» provide a solution for one specific set of parameter values
* global/semi-global methods are calibrated offline using
simulation data reflecting a broad range of system realizations

» yield approximate solutions for a distribution of parameters

Key Takeaways

* RL successfully navigates the infinite dimensional search
space using a finite sequence of forward model queries
minimal run-time costs and no additional model queries
framework is applicable to a diverse family of problems
flexible implementation, model treated as a black-box
data inefficient due to lack of system specific knowledge
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Future Work

incorporate physical knowledge of system into training
take advantage of the mathematical structure
prescribed by the FEM-discretized weak formulation
enforce constraints on the actor-critic networks
dictated by the Hamilton-Jacobi-Bellman equations
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