

Data-Driven Control Strategies for PDE Environments using Reinforcement Learning

Nick Winovich[†], Deepanshu Verma[‡], Lars Ruthotto[‡], and Bart van Bloemen Waanders[†]

Research Goals

- develop **global** strategies for controlling complex physical systems
- provide actionable control information in real-time
- identify a general framework adaptable to diverse system dynamics and flexible enough to account for practical constraints on actions

Challenges

- reliance on computationally demanding forward models
- limited number of data requests available due to complexity
- problem parameters and input conditions are unknown until the event commences and an immediate response is required
- infinite dimensional space of system configurations and policies

Model Environment for Reinforcement Learning

PDE System

$$\frac{\partial u}{\partial t} + \mathbf{v}_\phi \cdot \nabla u - D \cdot \Delta u = f_{\xi, \omega} - a \quad \text{in } \Omega \times [0, T] \quad \text{with } D = 0.5$$

$$u = 0 \text{ on } \{x = 0\} \cup \{y = 0\} \cup \{y = 1\} \quad \text{and} \quad \frac{\partial u}{\partial n} = 0 \text{ on } \{x = 1\}$$

Source Term and Velocity Field

$$f_{\xi, \omega}(x, y) = 5.0/\sigma \cdot \exp(-(|x - \xi| + |y - \omega|)/\sigma) \quad \text{with } \sigma = 0.01$$

where $\xi \sim \text{Uniform}(0.1, 0.25)$ and $\omega \sim \text{Uniform}(0.1, 0.9)$

$$\mathbf{v}_\phi(x, y) = \left(\sqrt{\eta^2 - \delta^2 \cdot \sin^2(2\pi \cdot [x - \phi])}, -\eta \cdot \sin(2\pi \cdot [x - \phi]) \right)$$

where $\eta = 12.5$, $\delta = 0.75$, and $\phi \sim \text{Uniform}(0.0, -0.3)$

Control Decision

Select an action $A_t = [r_t, v_t]$ for adjusting the initial magnitude $M_0 = 0.0$ and initial position $P_0 = 0.5$ of the sink expression $a(x, y, t)$ given by:

$$a(x, y, t) = M_t \cdot \exp(-(|x - 0.6|/\sigma_x + |y - P_t|/\sigma_y))$$

$$M_{t+1} = M_t + r_t \cdot \Delta t \quad \text{and} \quad P_{t+1} = P_t + v_t \cdot \Delta t$$

Objective function for model environment

$$\min_{\{r_t, v_t\}} \mathbb{E}_{\xi, \omega, \phi} \left[\int_{\Omega_T} |u(x, y, T)|^+ dm + \lambda \cdot \int_0^T |r(t)|^2 + |v(t)|^2 dt \right]$$

Outcome of Event Cost to Act

Reinforcement Learning with Actor-Critic Models

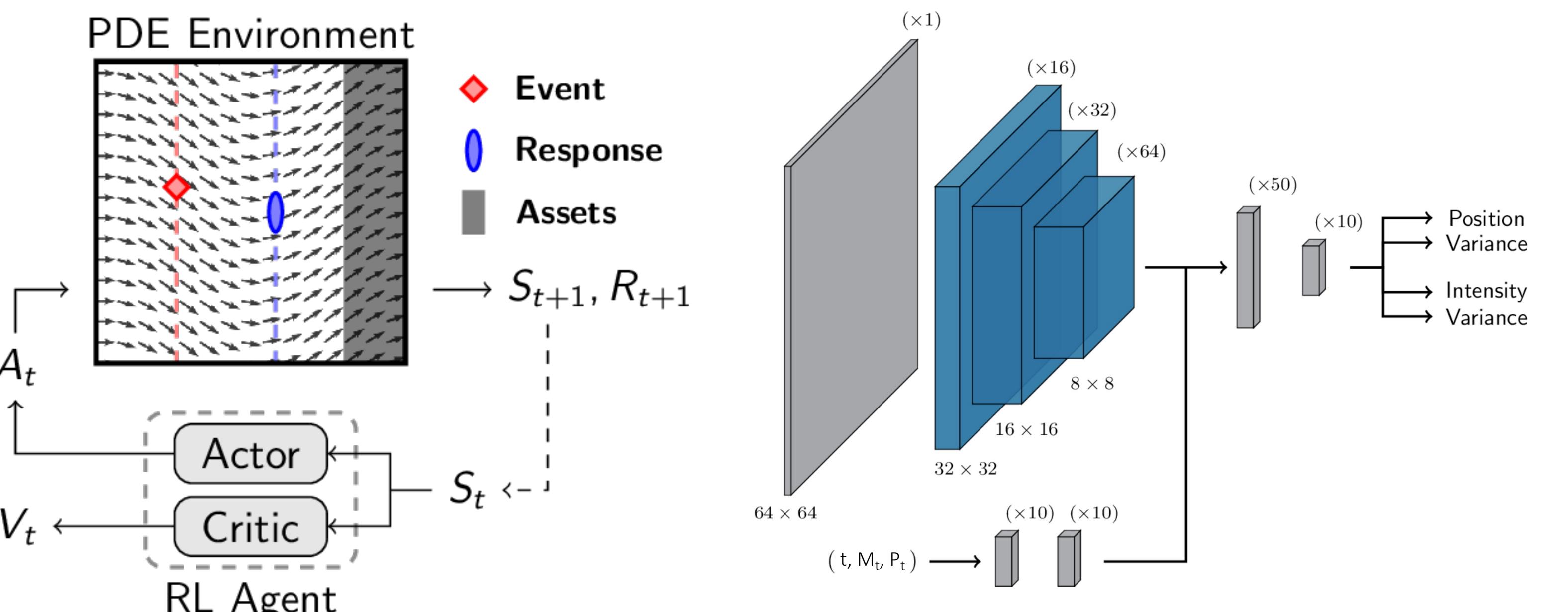
- an *actor* network is tasked with proposing control actions at each time-step based on the current system state
- a *critic* network is trained to predict the long-term value/outcome of the system based on the current state of the environment and actor
- the actor must refine its decisions to outperform the critic's prediction

Proximal Policy Optimization (PPO)

Schulman, John, et al. "Proximal policy optimization algorithms." *arXiv preprint arXiv:1707.06347* (2017).

- avoid over-tuning during training using trust-regions to select step-size
- move cautiously if feedback is positive, move decisively if negative

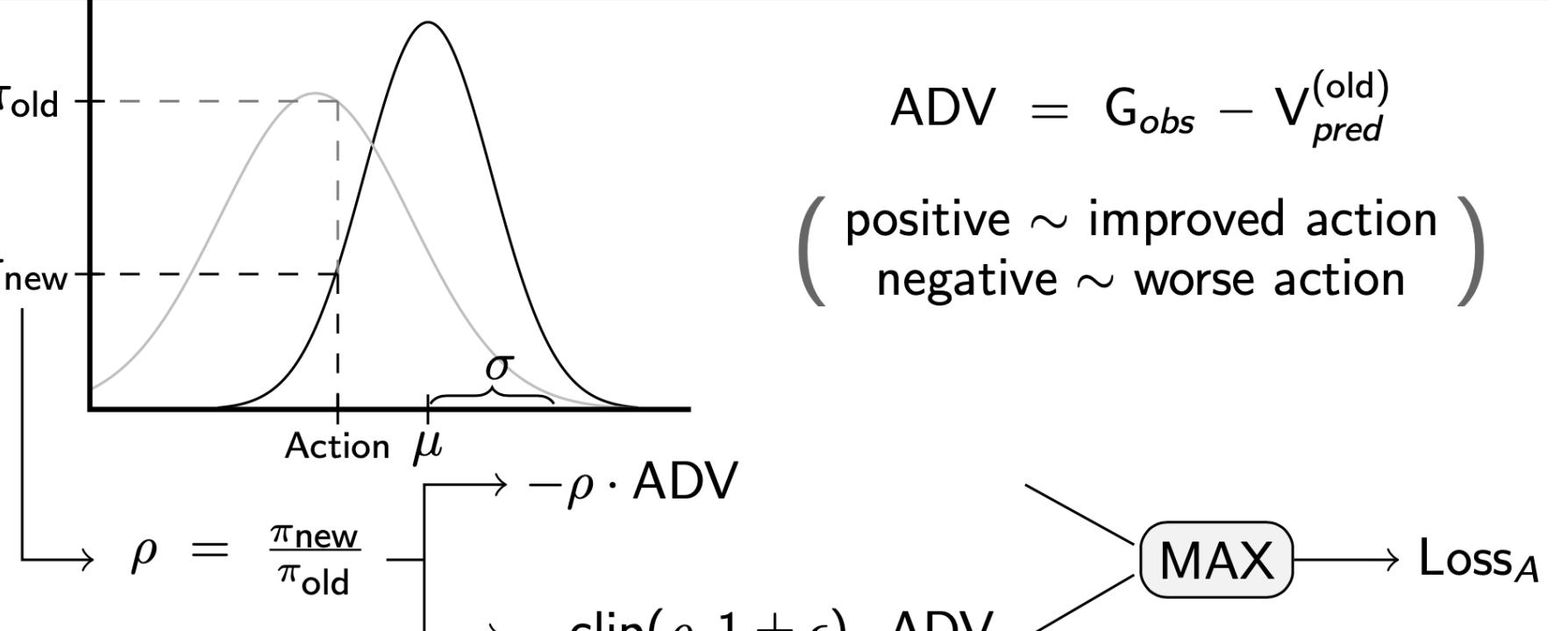
Training workflow and neural network architecture



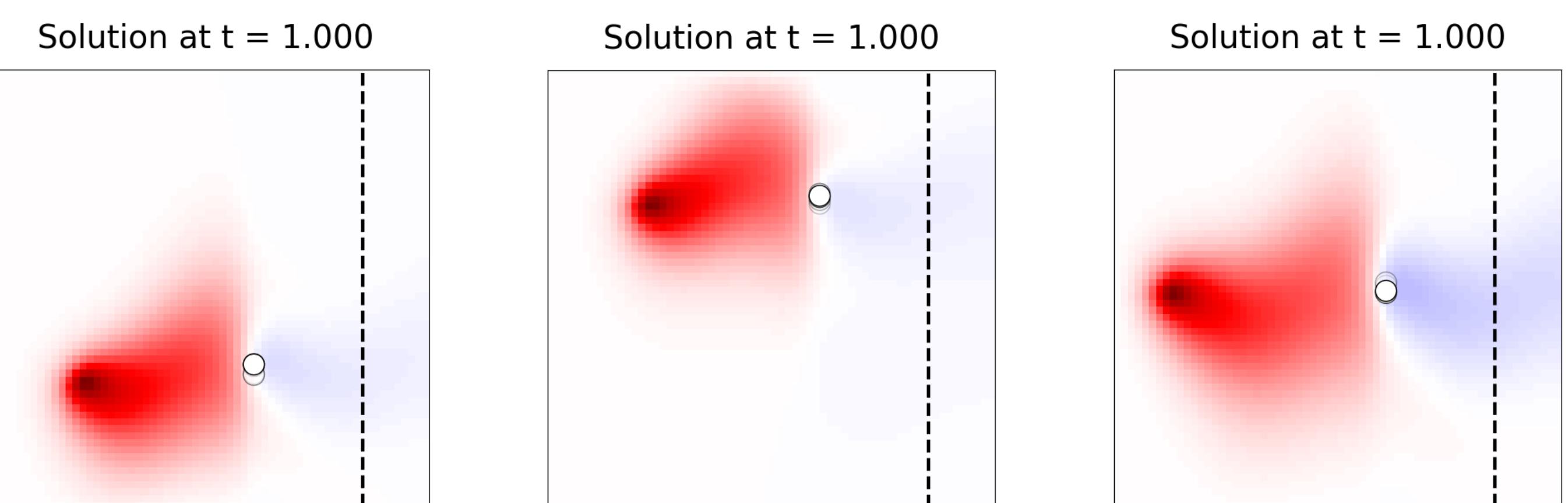
The RL agent is trained through repeated interactions with various environment realizations by:

- 1) estimating the value V_t of the current system state S_t (critic)
- 2) proposing an optimal course of action A_t at each time step (actor)

Actor loss for PPO



Outcomes using the control policy prescribed by a single network

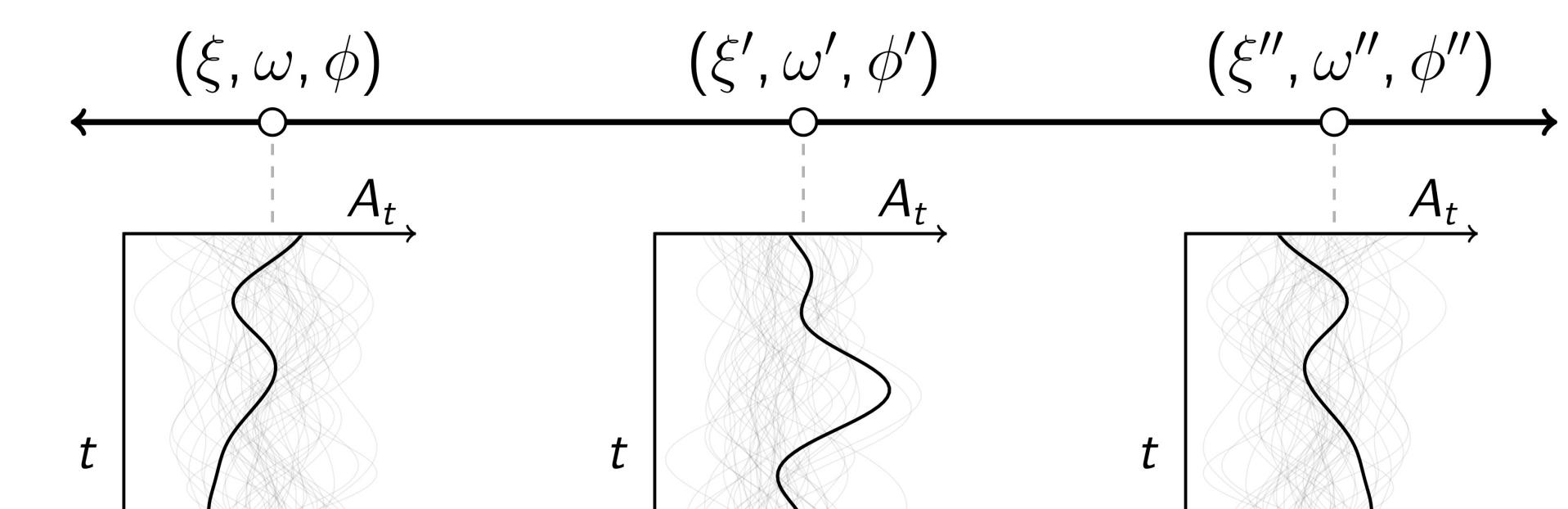


A single trained agent can quickly produce effective containment strategies for a variety of distinct problem realizations without referencing the forward model.

Search Space Complexity

- 3 continuously varying environment parameters which each have a notable effect on the overall system dynamics
 - unlikely to see the same realization more than once
- 25 actions must be selected sequentially for each realization
 - curse of dimensionality as number of time-steps increases
- search is performed using the scalar-valued objective alone
 - no gradient information or system knowledge

Local versus Global Solutions



- *local methods* apply to a single realization of the system and require repeated simulation calls once parameters are known
 - provide a solution for one specific set of parameter values
- *global/semi-global methods* are calibrated offline using simulation data reflecting a broad range of system realizations
 - yield approximate solutions for a distribution of parameters

Key Takeaways

- RL successfully navigates the infinite dimensional search space using a finite sequence of forward model queries
- minimal run-time costs and no additional model queries
- framework is applicable to a diverse family of problems
- flexible implementation, model treated as a black-box
- data inefficient due to lack of system specific knowledge

Future Work

- incorporate physical knowledge of system into training
- take advantage of the mathematical structure prescribed by the FEM-discretized weak formulation
- enforce constraints on the actor-critic networks dictated by the Hamilton-Jacobi-Bellman equations