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Complex concentrated alloys

CCA: Alloy with high concentrations of 
3 or more elements that can coexist 
without extreme phase separation

 AKA: high-entropy alloy (HEA), multi-
principal element alloy (MPEA)
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Coury et al., Acta Mat. 175 (2019)
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MoNbTaTi

Li et al., J. Mater. 
Res., Vol. 33, (2018)

Comprehensive DFT study of MoNbTaTi 
properties through composition space!

J. Startt et al., Materials Design 213 (2022)

 Training set to create machine learned 
interatomic potentials (MLIAPs)!

Coury et al., Acta Mat. 175 (2019)
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Exploring MoNbTaTi composition space - DFT6

Vary element A, hold elements B, C, and D 
constant

Ax(BCD)1-xStartt et al., Materials & Design. 213 (2022)
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Exploring MoNbTaTi composition space - DFT7

Vary element A, hold elements B, C, and D 
constant

Ax(BCD)1-x

Depleted of 
element A

Enriched in 
element A

Mo29.1Nb29.1Ta29.1Ti12.5 Mo16.7Nb16.7Ta16.7Ti50.0

Startt et al., Materials & Design. 213 (2022)
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Exploring MoNbTaTi composition space - DFT8

Vary element A, hold elements B, C, and D 
constant

Ax(BCD)1-x

Structures CCA (per 
composition)

Pure (per 
element)

Elastic strain ~ 1.5K - 2K ~ 100

AIMD, 
solid ~ 2K – 3K ~ 4K

AIMD, 
liquid ~ 1K – 2K ~ 3K

Volumetric 
strain ~10 – 20 ~ 25

Uniaxial 
strain ~15 – 20 -

Surfaces ~ 10 – 20 ~ 50 – 75 

Depleted of 
element A

Enriched in 
element A

Mo29.1Nb29.1Ta29.1Ti12.5 Mo16.7Nb16.7Ta16.7Ti50.0

Startt et al., Materials & Design. 213 (2022)
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MLIAP training scheme

MoNbTaTi DFT 
Training set 

9

Genetic 
algorithm Calculates bispectrum descriptors using 

spectral neighbor analysis

Outputs MLIAP:
Spectral Neighbor Analysis 

Potential (SNAP)
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MoNbTaTi DFT 
Training set 

10

Genetic 
algorithm Calculates bispectrum descriptors using 

spectral neighbor analysis

Goal 1: Understand ‘yield’ 
of rich composition-varied 

training set 
(no additional structures)

 MLIAP are trained to 
match trends in elastic 

properties with changes 
in composition Outputs MLIAP:

Spectral Neighbor Analysis 
Potential (SNAP)
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MLIAP training scheme

MoNbTaTi DFT 
Training set 

11

Genetic 
algorithm Calculates bispectrum descriptors using 

spectral neighbor analysis

Outputs MLIAP:
Spectral Neighbor Analysis 

Potential (SNAP)

Example: Young’s modulus E  Genetic algorithm favors MLIAP with low errors on cubic C11, C12, C44 

Goal 1: Understand ‘yield’ 
of rich composition-varied 

training set 
(no additional structures)

 MLIAP are trained to 
match trends in elastic 

properties with changes 
in composition
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Fits to higher-order elastic properties12
D

FT
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Fits to higher-order elastic properties13

• Can reliably get 
stable MLIAPs that 
match DFT trends 
well across 
composition space 
for single elements 

• Tested successfully 
at high T, P, and 
strain rates

D
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MoMoSN
A
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Fits to higher-order elastic properties14

• Now beginning to 
get stable MLIAP 
that can match two 
elements  can 
extrapolate to new 
compositions! (here: 
most Mo at-%, up to Ti 
~35 %)  

• Can reliably get 
stable MLIAPs that 
match DFT trends 
well across 
composition space 
for single elements 

• Tested successfully 
at high T, P, and 
strain rates

D
FT

Mo

Ti

Mo

Ti
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Extrapolation from training set15

Property SNAP
2-element MLIAP

New DFT
(not in training)

|SNAP - DFT|

C11 
(GPa) 

239.6 237.6 0.8 %

C12 
(GPa)

143.6 129.7 10.7 %

C44 
(GPa)

39.5 37.8 4.5 %

B (GPa) 175.6 165.7 6.0 %

G (GPa) 42.7 43.6 2.1 %

E (GPa) 118.5 120.1 1.3 %

Untrained composition (vary 2 elements)
Mo18.1Nb23.6Ta23.6Ti34.7

Startt et al., Materials & Design. 213 (2022)
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• SNAP | DFT 
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FitSNAP  
Active learning (AL) and 

uncertainty quantification (UQ) 
modules in development!

Property SNAP
2-element MLIAP

New DFT
(not in training)

|SNAP - DFT|

C11 
(GPa) 

239.6 237.6 0.8 %

C12 
(GPa)

143.6 129.7 10.7 %

C44 
(GPa)

39.5 37.8 4.5 %

B (GPa) 175.6 165.7 6.0 %

G (GPa) 42.7 43.6 2.1 %

E (GPa) 118.5 120.1 1.3 %

Untrained composition (vary 2 elements)
Mo18.1Nb23.6Ta23.6Ti34.7

Startt et al., Materials & Design. 213 (2022)
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Building the training set beyond elasticity

• Multiple compositions – explosion in number of training structures to include in DFT (expensive!) 
• Current MoNbTaTi comprehensive DFT set: no point defect structures or derivative (binary, ternary) alloys

• Use AL/UQ studies of point defect behavior and alloy chemistry to expand training set where necessary
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Building the training set beyond elasticity19

Primary knock-on 
atom (PKA) 

simulations  
Expose SNAP to per
-atom energy levels 
far exceeding range 
seen in training set

Training: order of 
~10 eV
PKA: 

5 keV, 10 keV, 20 
keV 

Point defects:  Radiation damage

• Multiple compositions – explosion in number of training structures to include in DFT (expensive!) 
• Current MoNbTaTi comprehensive DFT set: no point defect structures or derivative (binary, ternary) alloys

• Use AL/UQ studies of point defect behavior and alloy chemistry to expand training set where necessary
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Building the training set beyond elasticity20

Primary knock-on 
atom (PKA) 

simulations  
Expose SNAP to per
-atom energy levels 
far exceeding range 
seen in training set

Training: order of 
~10 eV
PKA: 

5 keV, 10 keV, 20 
keV 

Point defects:  Radiation damage

• Multiple compositions – explosion in number of training structures to include in DFT (expensive!) 
• Current MoNbTaTi comprehensive DFT set: no point defect structures or derivative (binary, ternary) alloys

• Use AL/UQ studies of point defect behavior and alloy chemistry to expand training set where necessary

Vacancy migration energy distributions (from NEB)

Mo-25%
Equiatomic

Mo-25% Nb-25% Ta-45% Ti-05%
(Ta enriched, Ti depleted)

Mo-25% Nb-25% Ta-05% Ti-45%
(Ta depleted, Ti enriched)
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Building the training set beyond elasticity21

Hybrid Monte Carlo / Molecular 
Dynamics (MCMD) simulations  

evolution of SRO with varying 
composition (also ternary

• Multiple compositions – explosion in number of training structures to include in DFT (expensive!) 
• Current MoNbTaTi comprehensive DFT set: no point defect structures or derivative (binary, ternary) alloys

• Use AL/UQ studies of point defect behavior and alloy chemistry to expand training set where necessary

Alloy chemistry:  short-range order studies
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Summary

MoNbTaTi is a promising member of the refractory complex concentrated alloys

A comprehensive DFT study was undertaken by Startt et al. to understand how non-
equiatomic composition affects material properties such as elasticity

Using FitSNAP and a genetic algorithm on the as-received DFT training set, we are 
successfully generating stable MLIAPs that can match elastic property trends across 
multiple compositions and extrapolate successfully to new compositions

Active learning and uncertainty quantification will be used to understand and expand 
scope of current MoNbTaTi training set 
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