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3 Complex concentrated alloys
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AKA: high-entropy alloy (HEA), multi-
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6 Exploring MoNbTaTi composition space - DFT

Vary element A, hold elements B, C, and D

constant
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7 Exploring MoNbTaTi composition space - DFT

Vary element A, hold elements B, C, and D

constant
| &o(BECD)gterials & Design. 213 (2022)
3.28 i
' » Nb
— ¢ ~ .- Z- X Tﬂ
< 326 R w
o 2y
S g
§ !‘ﬁi'-l——l _________ T
o ®.
s .
Y .
3= oy S )
2 RN
I © h{(_)
a.
10% 20%  30% 40% 50%
Depleted of A_ composition (at.%) Enriched in
element A : element A

M°16.7Nb16.7Ta16.7T|50.0



&  Exploring MoNbTaTi composition space - DFT

Vary element A, hold elements B, C, and D
constant
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MLIAP training scheme

optimize
hyper-parameters

. )

>

DAKOTA
Genetic i
algorithm Weight.s Set of Descriptors

FRSNAP.py

min(||w - DB —T||?

MoNbTaTi DFT
Training set

== [18]1™)

‘.

DFT Training

P

Outputs MLIAP:

Spectral Neighbor Analysis

Potential (SNAP)

Latrice spacing [ A
[ |

4+~ 8 @

$ .
.

L gt ]

¢ m I3

" e

Calculates bispectrum descriptors using
spectral neighbor analysis

SNAP = Po + Z aBk(Bk Bk{})



10

MLIAP training scheme

optimize
hyper-parameters

. )

>

Goal 1: Understand ‘yield’
of rich composition-varied
training set

no additional structures DAKOTA .

( ) A | FRSNAP.pY
Genetic min({lw - DB = T1I% = 7 11811")

- MLIAP are trained to  algorithm o s e, o e

MoNbTaTi DFT
Training set

Lattice spacing [ A)
[ |

match trends in elastic
properties with changes
in composition

P

Outputs MLIAP:
Spectral Neighbor Analysis
Potential (SNAP)

Calculates bispectrum descriptors using
spectral neighbor analysis

Ei

SNAF

K
= Bo+ Y _Br(Bi — Biy)
k=1

10



11 MLIAP training scheme
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DFT

Fits to higher-order elastic properties
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DFT
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Fits to higher-order elastic properties
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15 Extrapolation from training set

Untrained composition (vary 2 elements)
Mo, g {Nb,; gTay, ¢ Tis, 7

SNAP New DFT

C11 239.6 237.6 0.8 %
(GPa)
C12 143.6 129.7 10.7 %
(GPa)
C44 39.5 37.8 4.5 %
(GPa)
B (GPa) 175.6 165.7 6.0 %
G (GPa) 427 43.6 21 %

Startt et al., Materials & Descijgn. 213 (2022)
118.5 120.1

E (GPa) 1.3 %




16 Extrapolation from training set

Untrained composition (vary 2 elements)
Mo, g {Nb,; gTay, ¢ Tis, 7

SNAP New DFT

C11 239.6 237.6 0.8 %
(GPa)
C12 143.6 129.7 10.7 %
(GPa)
C44 39.5 37.8 4.5 %
(GPa)
B (GPa) 175.6 165.7 6.0 %
G (GPa) 427 43.6 21 %

Startt et al., Materials & Descijgn. 213 (2022)
118.5 120.1

E (GPa) 1.3 %

Increase system size

Young’s Modulus from stress- |

strain curve: ~120 GPa

- SNAP | DFT

72-atom cell
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17 Extrapolation from training set

- SNAP | DFT

Untrained composition (vary 2 elements)
Mo,g {Nby; cTay; 6Tlsy 7

72-atom cell

Startt et al., Materials & Des(i)gn. 213 (2022)
118.5 120.1

E (GPa) 1.3 %
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18 Bullding the training set beyond elasticity

* Multiple compositions — explosion in number of training structures to include in DFT (expensive!)
 Current MoNbTaTi comprehensive DFT set: no point defect structures or derivative (binary, ternary) alloys

 Use AL/UQ studies of point defect behavior and alloy chemistry to expand training set where necessary
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19 Bullding the training set beyond elasticity

* Multiple compositions — explosion in number of training structures to include in DFT (expensive!)
*  Current MoNbTaTi comprehensive DFT set: no point defect structures or derivative (binary, ternary) alloys

* Use AL/UQ studies of point defect behavior and alloy chemistry to expand training set where necessary

Point defects: Radiation damage

Primary knock-on
atom (PKA)
simulations >
Expose SNAP to per
-atom energy levels
far exceeding range
seen in training set

Training: order of
~10 eV
PKA:

5 keV, 10 keV, 20
keV

® Mo w Nb
m A Ta ® Ti
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20 Building the training set beyond elasticity

* Multiple compositions — explosion in number of training structures to include in DFT (expensive!)
*  Current MoNbTaTi comprehensive DFT set: no point defect structures or derivative (binary, ternary) alloys

* Use AL/UQ studies of point defect behavior and alloy chemistry to expand training set where necessary

Primary knock-on
atom (PKA)
simulations >
Expose SNAP to per
-atom energy levels
far exceeding range
seen in training set

Training: order of
~10 eV
PKA:

5 keV, 10 keV, 20
keV

Point defects: Radiation damage

® Mo w Nb
A Ta ® Ti
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Building the training set beyond elasticity

Multiple compositions — explosion in number of training structures to include in DFT (expensive!)
*  Current MoNbTaTi comprehensive DFT set: no point defect structures or derivative (binary, ternary) alloys

Use AL/UQ studies of point defect behavior and alloy chemistry to expand training set where necessary

Alloy chemistry: short-range order studies
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::E--.'i:-:'-::-‘-‘i. MoNbTaTi is a promising member of the refractory complex concentrated alloys

| et A comprehensive DFT study was undertaken by Startt et al. to understand how non-
- g~ . equiatomic composition affects material properties such as elasticity

/| Using FitSNAP and a genetic algorithm on the as-received DFT training set, we are
h successfully generating stable MLIAPs that can match elastic property trends across
multiple compositions and extrapolate successfully to new compositions

g
¥oung’s Modulus from stress- | ]
strain curve: ~120 GPa

Active learning and uncertainty quantification will be used to understand and expand
scope of current MoNbTaTi training set
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