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- Sandia LDRD:
« Moe Khalil (Sandia): principal investigator, algorithm development
» Reese Jones (Sandia): algorithm/software development — tempering transformations and objective functions
« Uma Balakrishnan (Sandia): software development, numerical experiments
« Wyait Bridgman (Sandia): algorithm/software development — multi-fidelity inverse UQ
« Jackie Chen, Bruno Soriano, Kisung Jung (Sandia): TL application in turbulent combustion modeling
« Tarek Echekki (North Carolina State University): TL application in turbulent combustion modeling
» Prof. Chris Pettit (US Naval Academy): TL for DoD relevant applications in atmospheric acoustics
« Erin Swansen and Prof. Naira Hovakimyan (University of lllinois at Urbana—Champaign): TL application for adaptive
control of urban air mobility

» SBIR subcontract (Cyentech Consulting LLC, Houston):
« Moe Khalil (Sandia): principal investigator, algorithm development
+ Cosmin Safta (Sandia): algorithm/software development
* Yueqin Huang (Cyentech Consulting LLC): customer - TL application for subsurface characterization
« Xuging Wu (University of Houston): academic collaborator, consultant
« Jiefu Chen (University of Houston): academic collaborator, consultant
« Han Lu (University of Houston): graduate student, algorithm/software development



Alleviating lll-Posedness in Training of ML Models with Sparse Data @ ﬁ}fﬁfﬂﬂes

« R&D Drivers: Increasing attempts to deploy Al/ML for various scientific and
engineering modeling tasks

» Challenges: Many application domains are defined by data sparsity,
effectively precluding the use of many predictive machine learning models:
X Expensive computer simulations (e.g. Exemplar in Turbulent Combustion)
X Sparse experimental data
X Limited access to classified/sensitive data

Data acquisition cost: ~10

R&D Outcome: Novel probabilistic transfer learning (TL) framework that million CPU-hours per turbulent
alleviates data sparsity while addressing key gaps in state-of-the-art TL combustion simulation!
techniques
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Shortcomings of existing TL methodologies @ Natona

Laboratories

 State-of-the-art algorithms in TL
X tend to be ML model-specific [George et al., 2018]

X do not consider all (if any) types of uncertainties (data, parametric, model-form/fidelity) [Colbaugh
et al., 2017, Raina et al., 2006]

X use simplified (i.e. Gaussian) probability representations of data [Karbalayghareh et al., 2018].
* Most importantly, existing methods do not address key questions relating to

X when it is worth applying TL (as opposed to traditional ML)

X which ML model to use in TL (out of a set of plausible ones)

X how much knowledge is to be transferred in order to safeguard against negative learning

Transfer Learning Approaches Brief Description
Instance-transfer To re-weight some labeled data in the source domain for use in the target domain
Feature-representation-transfer Find a “good” feature representation that reduces difference between the source and the target

domains and the error of classification and regression models

Parameter-transfer Discover shared parameters or priors between the source domain and target domain models, which
can benefit for transfer learning
Relational-knowledge-transfer Build mapping of relational knowledge between the source domain and the target domains. Both

domains are relational domains and 1.i.d assumption is relaxed in each domain




Traditional vs Proposed Probabilistic Transfer Learning @ Natona
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Enhancing Polynomial Chaos Expansion Surrogates Through Probabilistic Transfer Learning



Technical Approach @ Natond
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» The proposed framework comprises of four inter-related tasks:
» Capturing the knowledge to be transferred in training on source data
» Provide flexibility in capturing PDFs
» Low-fidelity Gaussian approximations (obtained using, for example, variational inference)
» High-fidelity Gaussian mixture-models (GMM), able to characterize general non-Gaussian
PDFs while enabling analytical scrutiny of the Bayesian framework.
* Result in a spectrum of performance gains in TL
* Propagating the knowledge to be transferred to target training tasks
» Achieved via extensions of sequential (Bayesian) data assimilation
* Rely on prior PDF tempering transformations (more on this later)
« Determining how much knowledge to transfer given a choice of tempering transformation
» Hierarchical or empirical Bayesian approaches for (joint) inference of tempering hyper-
parameters
 Information-theoretic measures; similarity and distance metrics
» Selecting optimal ML model to use in TL
» Probabilistic TL framework facilitates the use of Bayesian techniques for optimal model
selection
* Investigate feasibility of enhancing model complexity by leveraging Relevance Vector Machine
learning techniques
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Training of ML Models — Bayesian Approach @ Il\le?;ﬁlorli?(llries

M(x,0) =y = d+e

ML model// \ \ \ noise
observation

features
parameters target

« Forward Problem: Given ML model, /M, model parameters, 6, and feature vector, x, predict “clean” targets, y
* Inverse Problem: Given a set of “noisy” observations, D = {d;, ..., dy}, and feature vectors, X = {x4, ..., xy}, infer parameters
» Observations are
* inherently noisy with unknown (or weakly known) noise model
« sparse in space and time (insufficient resolution)
* Problem typically ill-posed, i.e. no guarantee of solution existence nor uniqueness
« Solution: Probability density function (PDF) over the parameter space obtained using Bayes’ rule:

likelihood rior
IKell O(zm} p(D|9)p(9)/ P
P

posterior p(D)—__ evidence

* p(0) is the prior PDF of 68: describes prior knowledge, inducing regularization
« p(d|0) is the likelihood PDF of 8: describes data fit
« p(0]d) is the posterior PDF of 9: full Bayesian solution

« Not a single point estimate

« Completely characterizes the uncertainty in 6

« Subsequently used in making predictions under uncertainty



Transferal of “Learning” in a Probabilistic Setting @ Natona
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* In a transfer learning context, we have a target task of interest (regression/classification) with

associated target data {Dr, X1r}. We also have access to "supplementary” source data {Ds, Xs}.

« Extending on mechanisms of propagating knowledge in sequential data assimilation (e.g. Kalman-
based filters), we can take the captured knowledge from the source data in the form of the
likelihood function and use it as prior knowledge in the target task:

likelihood of target data
/ g

posterior — p(01Dr, Ds) o« p(Dr|0)ps(8) — prior from source data

« Sequential data assimilation would dictate that the prior PDF is in fact the likelihood PDF obtained
using the source data, i.e. ps(0) = p(Ds|6)

X This approach does not provide flexibility in allowing the modeler to dictate how much knowledge,
if any, is transferred:

* In a traditional setting of data assimilation, all data, whether source or target, can be captured
by the same model with the same parameter values (or PDFs). This assumption is not longer
guaranteed to be valid in a transfer learning setting

* Need a mechanism to control how much knowledge, if any, is transferred from source task to target
task



Tempering-based Diffusion of Knowledge @ Natona
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« How much knowledge to transfer: Tempering-based methodologies

« Tempering transformations allow us to “diffuse” or “concentrate” probabilistic knowledge (PDFs)
gained through source domain learning tasks, effectively dictating how much knowledge is

transferred to the target learning task
« Many PDF-tempering transformations that dictate how knowledge is transferred are envisaged
» Two proposed strategies consist of extensions/modifications of existing Bayesian priors:
« ps(0|B) xp(Ds|6)~F Based on “power” priors
« ps(0|B) =B p(Ds|0) + (1 — BN (8;0,0°) Based on “mixture” priors

 For the two types of transformations above

 Full transfer: § — 1 reverts back to the full likelihood from the source training task (i.e.
traditional Bayes)

* No transfer: f§ — 0 results in a flat prior
 Partial transfer: 0 < f <1
« Optimal choice of £ depends on many factors, including:
« ML model used (can capture local vs global trends)
 Disparity between source and target domains
« Degree of relative data sparsity (between source and target domains)
 Relative intensity of noise in source and target domain data



Tempering-based Diffusion of Knowledge
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The following is an example of the extension of power-based and mixture-based prior tempering transformation to “diffuse”

knowledge in the prior PDF

The prior and likelihood PDFs are chosen to be Gaussian

Note: one can show that for a Gaussian PDF, raising it to a power S is equivalent to scaling the associated covariance
matrix by the same £ (mean vector unaffected)

Power prior: Gaussian posterior
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» Mixture prior: Gaussian-mixture posterior
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Degree of Knowledge/Learning to Transfer - Hierarchical Bayes @ Natona

« The “tempering” hyper-parameter(s) g allow us to control the degree to which learning is transferred from the
source task, characterized by the prior PDF, to the target task

« There are two approaches within a Bayesian context to determining g:
1. Hierarchical Bayes

« Afully Bayesian treatment of model parameters, 6, and noise and prior hyper-parameters, e.g. y
and g

* Proceed with joint inference of all unknowns according to joint posterior:

p(6,8|D)=p@|B,D)p(B|D) (probability chain rule)
o p(D[6,8)p(6|B)p(BID) (Bayes'rule)
=pD|68)pO|L)p(B) (independence assumptions) @

_@

« Posterior distribution over the ML model parameters, 6, can be o - -
obtained by marginalizing over the hyper-parameters e~ N Q) ~ps(O1F)

v Propagates uncertainty in hyper-parameters through to parameter é}\

posterior

X Added complexity associated with inference of “less relevant”
parameters and propagation of uncertainty associated with it

oS

M(x,0) = d+e

jof
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Degree of Knowledge/Learning to Transfer - Empirical Bayes @ Natorel

« There are two approaches within a Bayesian context to determining g:
2. Empirical Bayes
« A pseudo-Bayesian treatment of prior hyper-parameter(s),

v Instead of inferring and subsequentially propagating uncertainties in the hyper-parameters, point
estimates are obtained by maximizing some objective function

X What objective function? Although empirical Bayes has been applied in numerous contexts for
various purposes, there is not precedent for its use in transfer learning in determining such hyper-
parameters

v Our solution: Follow an information-theoretic approach, focusing on the relative entropy that
measures the information geometry in moving from the prior to posterior:

D [p(@1D,8),p(6 | A)] = —H[p(6|D,B),p(D|6)] = J logp(D | 6) p(6 | D,B)

Relative entropy Cross entropy Expected data-fit
(prior & posterior) (likelihood & posterior) (posterior-averaged log-likelihood)

« This objective function (usually employed for Bayesian experimental design) has multiple
interpretations, including an “average” log-likelihood one, resulting in a maximum “expected”
likelihood estimate for hyper-parameter(s) S



Expected Data-fit to Dictate Degree of Knowledge/Learning to Transfer @ Natona
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« Current strategy: Empirical Bayesian treatment of the tempering hyper-parameter(s) with information-theoretic
objective function in the form of the expected data-fit

« This is a data-driven approach: Optimal tempering hyper-parameters depend on the extent to which the
source and target data provide “similar” information on the unknown model parameters:

p(8|D,B) xp(D|0)p(8|B) ﬁopt=m/§1x Ellogp(D | 8)] = mﬁaXflogp(D |6)p(0|D,p)do
| J

Integral over parameter-space!
» Desirable properties:

« Utilizes whatever available sparse target data (no need to split target data into training and testing sets)
» Full Bayesian treatment of parametric uncertainties

* Generally applicable to any ML model and tempering transformation

» For Gaussian distributions (linear-in-parameter ML models) and power prior tempering transformation,
closed form expression available for the objective function and gradient/Hessian, thus facilitating
optimization step



Expected Data-fit to Dictate Degree of Knowledge/Learning to Transfer @ Natona

Laboratories

 Revisiting the 1-D example of dealing with Gaussian PDFs, let’'s examine the result of utilizing the expected data-fit to drive
the choice of tempering hyper-parameter(s)

* Note: for Gaussian PDFs and the use power-prior based tempering transformations, the expected data-fit is available

analytically
p(0|D,B) x p(D|6)p(6)F Bopt Z max E[logp(D | 6)] = mgxflogp(D |0) p(6|B,D)do
- :, Little transfer
= Bope = 02
:, i :, Moderate transfer
| Bope = 0.55

-10°

-10?

Full transfer

a ] T
,B opt — 1

PDF
Expected data-fit
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Polynomial chaos expansions (PCEs) are spectral expansions in the form

K-1

) ~ ) o W)

k=0
with ¥’s being orthogonal polynomials with respect to some measure p(x):

* p(x) is normal, W(x) are Hermite polynomials
* p(x) is uniform, W(x) are Legendre polynomials
Truncation, i.e. choice of K, typically fixed based on chosen (total) order of expansion
Some advantages over monomial basis:
« Can use projection-based methods to identify c,
« Sensitivity indices (Sobol), output moments available analytically
Coefficients ¢, determined using:
« Projection (integration): Monte Carlo, Quadrature, etc..
* Regression: Least-squares, Bayesian Gaussian (in parameter) Likelihood

N 1 K—-1 2
1 1_[ o 272 (yi—Xk=o ck P(x)
N
(V 21 V) i=1

yi = f(x;) + € e; ~ N(o,y?) p(yy, ., YNl €) =



Probabilistic Transfer Learning at Work — Polynomial Surrogates @ Natorel
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« Assuming we’re dealing with a “true” model given by
yi = f(x) + ¢ =0.1x3 — 0.75x + ¢; e; ~ N (0,1x10%)
+ We have 30 data points from the source domain and 4 from the target domain
0.6
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« Transfer learning task: Leverage the available source data to enhance accuracy of predictive model for target
task, trained using the scarce target data

« We start with an approximate ML model to train. Let’'s assume a linear model:

yiza0+a1x+6i



Probabilistic Transfer Learning at Work — Polynomial Surrogates @ Natona
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» The source data, once assimilated, provide the prior PDF for subsequent use in the target training task
Similarly, the target data provide the likelihood PDF

« We maximize the expected data-fit to arrive at an optimal power prior

) ' ) prior ' ' ) ' ' [@power prior|
-0.55F glikelihoodl -0.55
-0.6 E pe 0.6} {2 posterior
0.65} ] 8 S -0.65}
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The following are posterior predictive mean estimates and confidence intervals
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» Observation: overlapping source and target domains result in full transfer of learning



Probabilistic Transfer Learning at Work — Polynomial Surrogates @ Natona
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» Let’s repeat the procedure with a target domain that’s adjacent to the source domain (extrapolation)
Again, we maximize the expected data-fit to arrive at an optimal power prior

0.6 | -
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The following are posterior predictive mean estimates and confidence intervals

0.1
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» Observation: Optimal transfer results in more accurate/precise predictions



Probabilistic Transfer Learning at Work — Polynomial Surrogates
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Lastly, we examine dissimilar target and source domains
Again, we maximize the expected data-fit to arrive at an optimal power prior
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Expected data-fit
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Observation: Negligible transfer takes place with dissimilar tasks

optimal transfer, f,,. = 0.0005
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« Developing a novel probabilistic framework for transfer learning:
1. Reducing the validation/testing errors of such models by leveraging data from similar domains
Propagating parametric, model-form, and data uncertainties towards predictions
Allowing for optimal ML model selection within the TL paradigm
Exhibiting moderate/strong computational scalability with increasing data volume and model complexity
Safeguarding against negative learning (decreased accuracy due to task disparity, w.r.t. baseline)
Consisting of strictly non-intrusive methods, applicable to most ML models without needing to modify the model
(architecture) or implementation.
» Key technical steps:
1. Capture the knowledge to be transferred in training on source data
* Probability density functions on the calibrated ML model parameters/hyperparameters using Bayesian inversion
« Captures data and modeling errors/uncertainties
2. Propagate the knowledge to be transferred to target training tasks
* Novel mechanisms for knowledge transfer that extends the traditional Bayesian approach via the application of
prior PDF tempering transformations
3. Determine how much knowledge to transfer given a choice of tempering transformation
« Explore hierarchical or empirical Bayes approaches, based on information-theoretic measures and distance
metrics
4. Determine optimal ML model to use in TL
* Determine the optimal ML model for TL using Bayesian model selection

o oA wN



