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Introduction
« Stationary energy storage systems (ESS) are increasingly deployed to  When thermal runaway models include enough realistic physics, they can be
maintain a robust and resilient grid. used to:
* As system size increases, financial and safety issues become important * |dentify experimentally accessible parameters that strongly influence
topics. cascading propagation of thermal runaway through modules of cells.
* Holistic approach: electrochemistry, materials, and whole-cell abuse will * Predict trends in heat transfer and cascading propagation behavior.
fill knowledge gaps.  |dentify regions of parameter space of greatest interest for
+ Models enable knowledge to be applied to different scenarios and larger experiments.
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