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Cyclic repetition of two reactions that sum to 
ammonia formation
3/2 H2 + 1/2 N2 → NH3 

Reduction by H2 to form NH3

Regeneration of Nitride 
by reaction with N2

NH3 Synthesis from Nitrides at lower pressure or 
higher temperature with good selectivity?
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Challenge: Identify and optimize a metal nitride

• Tuning the nitride thermodynamics to the reaction
• Reaction with the bulk, not (exclusively) surface-

catalyzed
– NH3 dissociates (thermodynamically unfavorable relative 

to H2+N2) at high temperature
• Nitrogen diffusion in metal nitrides slow? (nitrogen 

conductors)
• Nitride synthesis can be difficult – e.g. reacting under 

flowing NH3 at high temperature
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• Thermodynamic of the two reactions 
comprising the cycle inextricably  linked.

∆G1 + ∆G2 = ∆G3

 The more favorable is nitridation, the 
less favorable is ammonia 
production, and vice versa.
 Ammonia formation is exothermic –

unconventional for a cycle.

3/2 H2 + 1/2 N2 → NH3 

1/γ MNy + 3/2 H2 → 1/γ MNy-γ + NH3 

1/γ MNy-γ + 1/2 N2 → 1/γ Mny (1)

(2)

(3)

Basic Thermodynamic Principles

Ammonia Formation

Nitride Formation

Favorable
U

nfavorable
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Subset of data for 
elements of interest

Begin with Survey of Binary Nitrides & “Conventional” Cycle Construct

No Ideal Candidate

Ternaries (two metals) offer the opportunity to tune 
the thermo to that required for a two step cycle.Rethink these cycles a bit –

e.g. impact of pressure
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Element Considerations

Start with the Periodic Table

Binary Nitride Thermodynamics

Ternary Nitride Considerations
Co3Mo3N
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*Hunter, S.M., Mckay, D., Smith, R.J., Hargreaves, J.S.J., Gregory, D.H., 2010, Chemistry of Materials, 22(9), pp. 2898-2907.
Gregory, D.H., Hargreaves, J.S.J., Hunter, S.M., Catalysis Letters, 2011, 141(1), pp. 22-26.

After Ternary Considerations 38(+) Combinations of Interest  

Co3Mo3N (CMN331)
Can undergo reversible phase 

change to CMN661, losing 50 mol% 
of nitrogen:

2Co3Mo3N + 3/2H2 2Co6Mo6N + NH3

Co6Mo6N + 1/2N2 2Co3Mo3N

Both phases crystallize in same space 
group (Fd-3m) – facilitate kinetics?

Reports that material can be 
regenerated directly by N2
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Co3Mo3N

Solution: 
Co(NO3)2·6H2O + 
(NH4)6Mo7O24· 

4H2O

Heat the solution 
to 80°C:

Purple precipitate

Vacuum 
filtration

Dry overnight at 
150°C:

CoMoO4· xH2O

Calcine at 500°C 
for 3h:

CoMoO4

React at 785 °C, 
10% H2/N2

Co3Mo3N

Synthesis of oxide precursor followed by nitridation in 10% H2 results in single phase 
Co3Mo3N (somewhat milder synthesis conditions than reported ammonolysis1)

1Hunter, S. M., et al., Chem Mater 2010, 22 (9), 2898. 
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A family of single-phase A3BxN (A=Co, Ni, Fe; B=Mo, W; x = 2, 3) ternary and 
quaternary nitride solid solutions has been synthesized

Composition Target Phase 
(> 95% via XRD)

Co3Mo3N 331
(CoxNi1-x)2Mo3N (x = 0.25, 0.5, 0.75) 231
Ni2Mo3N 231
(FexNi1-x)2Mo3N (x = 0.25, 0.5) 231
Fe3Mo3N 331
(CoxFe1-x)3Mo3N (x = 0.25, 0.5, 0.75) 331
Co3(WxMo1-x)3N (x = 0.005 - 0.05) 331
(NixCo1-x)3Mo3N (x = 0.005 - 0.05) 331

 W > 5% in Co3Mo3N (“331”) B-site substitution leads to phase segregation and reluctance to nitridize
 Ni > 5% in Co3Mo3N or Fe3Mo3N A-site substitution leads to phase segregation and preference of 

Ni2Mo3N (“231”) structure
Gao, X.;  Bush, H. E.;  Miller, J. E.;  Ermanoski, I.;  Ambrosini, A.; Stechel, E. B., 
Synthesis and Structural Study of Substituted Ternary Nitrides for Ammonia 
Production. submitted 2022.
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Reactor designed to perform NH3 synthesis and nitridation under variable 
pressure and temperature, up to 30 bar  and 800 °C, respectively 
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Two regions apparent in extended reduction experiments
Nearly constant rate – 331 (662) → 661
Linearly decreasing rate – 661 → Metal

Reactions of CO3MO3N
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Reduction 
step

P(H2)
bar

Thold
°C

thold
h

Steady 
r(NH3)

10-5 mol 
molN

-1 s-1

Steady 
r(N2)

10-5 mol 
molN

-1 s-1

NH3 yield
mol/molN

N2 yield
mol/ 
molN

Reacted solid-
state nitrogen

mol molN
-1

Selectivity 
to NH3

2 20 700 2 2.32 0.455 0.121 0.0610 0.243 49.8%

3 20 700 2 2.93 0.923 0.151 0.111 0.372 40.5%

4 20 700 2 4.27 0.985 0.271 0.113 0.498 54.5%

5 20 700 2 2.86 0.413 0.154 0.0496 0.253 60.8%

6 20 700 2 3.20 0.643 0.183 0.0742 0.331 55.2%

7 20 700 2 3.29 0.792 0.225 0.0842 0.393 57.2%

 All re-nitridation steps were performed with 20 bar of 10% H2/N2 at 700 °C
 Sample held at 5 sccm H2 / 15 sccm Ar overnight, 1.2 atm, 120 °C

Steady production rates were 
calculated using averages of the last 
10 min of stabilized rate data before 

cool-down

Reacted solid-state nitrogen 
was calculated by adding 

NH3 yield and two times of N2
yield (theoretical max 

CMN331 CMN661 = 0.5)

Selectivity to NH3 was 
calculated by percentage of 

NH3 yield in the reacted 
solid-state nitrogen

Repetitions on single Co3Mo3N sample ‒ Reaction is cyclic
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NH3, N2 production rates and temperature profile of 
representative reduction step under 100% H2 (Cycle 6)

 Initial NH3 peak  assumed to be hydrogenation of 
surface adsorbed N2

 At T > 600 °C, consistent co-production of NH3 and 
N2 in 100% H2 (no external N2 feed) 

 Production rates fairly flat in all the reduction steps 
with no evident dependence on the consumed solid-
state nitrogen.

 Sample can be re-nitridized under 100% N2 at same 
with no side-reactions observed

• P = 20 bar, T = 700 °C for both reactions

Results imply that lattice nitrogen participates in NH3 production 
in reversible CMN331  CMN661 bulk reaction
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 Partial conversion to 661 after reduction (both 331 and 661 phases observed), consistent with bulk 
reacted nitrogen calculation of < 0.5

 Regeneration to 331 after re-nitridation with no sign of secondary phase

As-prepared

After reduction

After re-nitridation

CMN331
CMN661

XRD of Co3Mo3N nitride in different 
stages of the cycle demonstration 

XRD Confirms Bulk  Reduction and 
Nitridation

CMN331  CMN661  CMN331 



15SolarPACES | Albuquerque, NM, Sept. 27-30, 2022 | ASU LIGHTWORKS® | James E. Miller

Reductio
n step

P(H2)
bar

Thold
°C

thold
h

Steady 
r(NH3)

10-5 mol 
molN

-1 s-1

Steady 
r(N2)

10-5 mol 
molN

-1 s-1

NH3 yield
mol/molN

N2 yield
mol/ 
molN

Reacted solid-
state nitrogen

mol molN
-1

Selectivity 
to NH3

8 20 600-720 0.5×5 -- --

9 15 600-720 0.5×5 -- --

10 10 600-720 0.5×5 -- --

11 5 600-720 0.5×5 -- --

T steps at 
varying pH2

Xiang, G., et al, “Sustainable Ammonia Production via a Novel Two-step Thermochemical Cycle of a Co3Mo3N/Co6Mo6N pair.” in prep, 2022. 

 All re-nitridation steps were performed with 20 bar of 10% H2/N2 at 700 °C
 Sample held at 5 sccm H2 / 15 sccm Ar overnight, 1.2 atm, 120 °C

Second Set of Experiments with Same Sample of CMN
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NH3, N2 production 
rates and selectivity 
of reacted nitrogen to 
NH3 as a function of 
reacted nitrogen in a 
temperature stepping 
reduction experiment 
(20 bar, 100% H2, 8th

cycle)

720°C

697°C

661°C

632°C

602°C

Typical Data Set

 Selectivity continuously calculated (summed) over 
entire run – i.e. not he instantaneous value
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NH3 production demonstrated at slightly higher T and much lower P (~650 °C, ~20 bar) 
compared to H-B (~450 °C, ~200 bar)

Conversion of bulk N to NH3 and N2 increases with T and P
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 Conversion increases with T 
 NH3 selectivity decreases with increasing T but exceeds expectation

~650 °C Balances Rate and Selectivity

“Excess” Selectivity
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• Use caution comparing catalytic vs bulk reaction, but …
• Ea ranges from 40 (HB) -120 kJ/mol for a variety of heterogeneous (HB) catalysts
• Ea = 54 kJ/mol reported for Cs-promoted Co3Mo3N, T = 320-440 °C,  P = 50 bar 

?
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Temp (C)
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Rate NH3 formation = k1[H2]1.5

Reaction A 
(mol/molN-

S)

Ea (kJ/mol) Order in 
[H2}

NH3 0.00463 76.4 3/2

NH3
thermolysis

≈ 350

• Simple analysis 
consistent with multi-
step mechanism for 

NH3 formation 
• (3/2 order in H2)

• Favorable Energetics
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Reaction A (mol/molN-S) Ea (kJ/mol) Order in [H2}

NH3 0.00463 76.4 3/2

N2(1) 2.59x1016 390 0

N2(2) 0.00274 98 ≈ 2

NH3 thermolysis ≈ 350

N2 rates consistent with 
multiple pathways

Rate N2 formation = k1 + k2[H2]2

0 order in H2
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• Ternary nitrides in the family A3BxN (A=Co, Ni, Fe; B=Mo; x=2,3) identified and 
synthesized 

• Experiments with Co3Mo3N in Ammonia Synthesis Reactor demonstrate cyclable NH3
production from bulk nitride under pure H2
– Production rates were approx. constant in all the reduction steps with no evident dependence on the 

consumed solid-state nitrogen up to formation of 661
– Material can be re-nitridized under pure N2 (or 10% H2/N2)
– Bulk N utilization per reduction step averaged between 25 – 40% of the total (2-3 hours)
– Rate equations and parameters extracted from data.
– NH3 selectivity exceeds gas phase equilibrium at higher temperatures (in a large excess of H2)
– Selectivity begins to decrease significantly above 650 C, N2 production rapidly increases above 650 C 

seemingly due to reaction that is zero order in H2 (thermal reduction of the nitride?). 
• Poised to begin the systematics studies of relationships between materials and reactions
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Why Multiple Metals are Required

Black lines: Equilibrium pN2

Ammonia FormationNitridation

Equilibrium  pH2 = pNH3
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