Arizona State University

This r describes' b 't h callresults| nalysis.fAn i di - ===
& I I! l htwor th ppr do ? I nI evu! ws o \‘U S JDe; y!) r‘(men off EeneS o e E:jStlétes go?/)énrweszt;t. 4 " _' 5 SAND2022-13452C
g m j ‘ ¥ | A= : | g -
i 2 _ .- w3 'E" £ s

Solar Ammonia Production via Novel T-step
Thermochemical Looping of a Co;Mo;N/CosMogN pair

Xiang Gao, Ivan Ermanoski, Alberto de la Calle, Andrea Ambrosini, and Ellen B. Stechel

Presented by James E. Miller

Arizona State University

andia.National Laboratories is'a/multimission laboratory.managed and,operated.by.National.Technology &.Engineering.Solutions;of Sandia, LLC,.a wholly.owned
SOlarPALLsubsda ykof(Ho eywell'l nter nationallinc. [forithefl U .S[Departmen t{pr nert gLsLNato nal Nuclear] SecurityJAdministrationjun de r'contractjDE-NA0003525.|@F 1



FSULightWorks

Arizona State University

4 : . :
Cyclic repetition of two reactions that sum to
ammonia formation
3/2 H,+ 1/2 N, - NH,4
\ /
Heat Recovery
Regeneration of Nitride
by reaction with N, T MNy, + 172 N, ey 177 MIN,
Nitridation Reactor
MN,

MN,

Ammonia Production Reactor
1/y MNW + NH; ¢— 11y MNy +3/2 H,

H,

N

Z Reduction by H, to form NH,

NH; Synthesis from Nitrides at lower pressure or
higher temperature with good selectivity?
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[ Challenge: Identify and optimize a metal nitride 1

* Tuning the nitride thermodynamics to the reaction
e Reaction with the bulk, not (exclusively) surface-

catalyzed
— NH, dissociates (thermodynamically unfavorable relative
to H,+N,) at high temperature

* Nitrogen diffusion in metal nitrides slow? {nritregen
conductors)

* Nitride synthesis can be difficult — e.g. reacting under
flowing NH; at high temperature
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Basic Thermodynamic Principles

600
_____ f /\_n e Thermodynamic of the two reactions
400 . . . . .
% comprising the cycle inextricably linked.
Ammonia Formation N
(o}
L 1y MN,_, + 1/2 N, - 1y Mn, (1)

17y MN, + 3/2 H,— 1/y MN,., + NH; (2)

3/2 H,+ 1/2 N, — NH, (3)

Nitride Formation

-400 *
600 The more favorable is nitridation, the

273 473 673 873 1073 1273 less favorable is ammonia
Temperature (K) production, and vice versa.
—2AI+N2(g) = 2AIN — T2AIN +3H2(g) = Al+ 2NH3(g) Ammonia formation is exothermic —
——6Ni + N2(g) = 2Ni3N — —2Ni3N + 2H2(g) = 2Ni + 2NH3(g) unconventional for a cycle.

9|geJonejun

AG; + AG, = AG;
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‘ Begin with Survey of Binary Nitrides & “Conventional” Cycle Construct

AG (kcal/mol)

'

o

50

40

30

20

10

0

-10

— N,{g)} + 3HZ(g)
4 | —— MNitride formation

=2NH,(g)

Ammonia formation from nitride

7

7

0 200 400

600

Temperature (C)

800

Rethink these cycles a bit —
e.g. impact of pressure

1000

Subset of data for
elements of interest

—— 3H2(g) + M2(g) = 2MH3(qg)
2In+ M, =2InN
— BNi + MN2(g) = 2Ni3N
3Zn +N2{(g) =Zn3N2
— BCo + N2(g) =2C 03N
— 4Fe + N2(g) = 2Fel2N
4Mo + N2(g) = 2Mo2M
— 3Mn + MN2{g} =Mn3M2
— AW + N2{g) = 22N
-20 4 — 2Ga + N2{g) =2GaN
— 2Cr + N2(g) =2CrHN
= BLi + M2{g) = 2Li3N

40 No Ideal Candidate

| 1 1 T
0 200 400 600 800 1000

AG (kealimol)

Temperature (C)

ﬂ-a-

Ternaries (two metals) offer the opportunity to tune
the thermo to that required for a two step cycle.
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t Ternary Nitride Considerations

No ternaries, leaving 38 nitrides (0.28%)
Neither redox, leaving 60 nitrides (0.45%)

100%

‘ Binary Nitride Thermodynamics
116 x 116

ternary
nitrides

Non-Metal (18), leaving 44 elements and 1936 nitrides (14.4%)
Scarce elements (32), leaving 62 elements and 3884 nitrides (28.9%)

Radioactive elements (22), leaving 94 elements and 8836 nitrides (65.7%)

Start with the Periodic Table

- 13456 Too unfavorably bound (3), leaving 18 and 324 (2.4%) |
;;usgime Too favorably bound (20), leaving 21 and 441 (3.3%) 008 Element Considerations
Toxic (18), leaving 41 elements and 1681 nitrides (12.5%) | 4995 =

13 14 15 16 17

K Ca Sc Ti V Cr Mn Fe Co| Ni Cu
Rb Sr Y Zr Nb Mo Tc|Ru Rh Pd| Ag S
Cs Ba La| Hf Ta| W Re Os| Ir | Pt Au. TI PH Bi Po.
Fe Ra Ac | Rf | Db| Sg|Bh| Hs | Mt | Ds - = i

]
‘Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lui lanthanides

|Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
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After Ternary Considerations 38(+) Combinations of Interest

Cation Redox Active Cation Redox Inactive
Cr | Fe Mn [ Mo | V W Ba Ga Li | Mg | Na | Sr
-13.8 | -33.1 |-60.2 -83.3 [-132|-174|-3.94

-50.5 -71.5

Cation
Redox
Active | Ge | 2.1

Ni |22.8

Sn [46.0
Cation
Redox 77,7357
Inactive

Co,Mo;N (CMN331)

Can undergo reversible phase
change to CMN661, losing 50 mol%
of nitrogen:

2Co;Mo;N + 3/2H,> 2Co,MogN + NH,
CogMogN + 1/2N, = 2Co;Mo;N

Both phases crystallize in same space
group (Fd-3m) — facilitate kinetics?

Reports that material can be
regenerated directly by N,

*Hunter, S.M., Mckay, D., Smith, R.J., Hargreaves, J.S.J., Gregory, D.H., 2010, Chemistry of Materials, 22(9), pp. 2898-2907.

Gregory, D.H., Hargreaves, J.S.J., Hunter, S.M., Catalysis Letters, 2011, 141(1), pp. 22-26.
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Calcine at 500°C

D ight at
ry overnight a React at 785 °C

e

5h conversion

[20200819 3 CoMoO4 calcined at 500C xrdml] 20200819 3 ColMoO4 calcined at 500C

PDF# 00-021-0868 CoMoO,

Y A AJk..n._L .

7.5h conversion

0
10h conversion
AN A ,A e ~ A e ‘A . A
500

‘ CozMo3N
. 1 I '| | o - a [ ] . | I ] . B

20 30 40 50 60 70 80 90
50 60 70 a0 90
Two-Theta (deg) 26 (0)

Intensity (a.u)

Synthesis of oxide precursor followed by nitridation in 10% H, results in single phase
Co;Mo;N (somewhat milder synthesis conditions than reported ammonolysis?)

SolarPACES | Albuquerque, NM, Sept. 27-30, 2022 | ASU LIGHTWORKS® | "Hunter, S. M,, et al., Chem Mater 2010, 22 (9), 2898.
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A family of single-phase A;B,N (A=Co, Ni, Fe; B=Mo, W; x = 2, 3) ternary and
quaternary nitride solid solutions has been synthesized

Composition Target Az
P & (> 95% via XRD) —

—

Co;Mo;N
Co,Mo;N 331 2000 e d A B ol
(Co,Ni,,),Mo;N (x =0.25, 0.5, 0.75) 231 - ‘ Tl JFeo.25C00.75)3M03N
Ni,Mo;N 231 <3000 17 . a 1
(Fe,Ni,_,.),Mo;N (x = 0.25, 0.5) 231 Z - V (Feo5C0g5)sMosN
Q 4

Fe;Mo;N 331 = N

3 SFeo.75C00.25)3M03N
(Co Fe, )sMo;N (x = 0.25, 0.5, 0.75) 331 1000 — : S 3
Co,(W,Mo,.);N (x = 0.005 - 0.05) 331 Fe;MosN
(Ni,Co,_);MosN (x = 0.005 - 0.05) 331 0 | | | | | | ' |

20 30 40 50 60 70 80 90 100

W > 5% in Co;Mo;N (“331”) B-site substitution leads to phase segregation and reltictance to nitridize

Ni > 5% in Co;Mo;N or Fe;MosN A-site substitution leads to phase segregation and preference of
Ni,Mo;N (“231”) structure

Gao, X.; Bush, H. E.; Miller, J. E.; Ermanoski, I.; Ambrosini, A.; Stechel, E. B.,
Synthesis and Structural Study of Substituted Ternary Nitrides for Ammonia
Production. submitted 2022.
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Reactor designed to perform NH; synthesis and nitridation under variable
pressure and temperature, up to 30 bar and 800 °C, respectively

K type !_ To backpressure
thermocouple regulator and

ventilation {
a T:wl}:o pUITII:'StatIOn H b ‘[ ( X typa '
In-line screen ({fj Outlet pressure gauge 3 { r‘l’ LA 8% # [thermocouple
To vacuum L o S £/ RGA : o | a
and RGA © /_- . ‘ gl '
, - AR 3 j mEm;
Two micro orifices by
with differential pumping | i’ J ‘
= o === "o
Tk Dual stage RGAsamplinglineg st Y+ p T
Reactor tube ‘é\ { et = == tT ” 3 Hf-" i
Fepsey | j:O.MS”OD:O,g?s” = St ' .f;:T LE = 4Back Pres;ure
»\T _. | AW ] e = TN/ regulatur r
o _, Arinletand outlet ‘BOn @ s S id Reactor r_x-'/ S = ;-ﬂ”
" ‘\‘ “ For cavity pressure balan - \ - gri be — hamber b ressure Ar
. \ e - o
Sample cell '\i\\ . Insulation /N E A z \5‘\
H~0.75" ¢~0.23" ™ Alumina support ring 2
o p . R
Heating wires (Kanthal) Viton sleeve " . - W/ # J9 0 EeE
o For reactor tube/cavity et . e / : : -
Tri-clamp connection separation / Inlet
Access point for sample loading/retrieval { : pressure gau
N
1)
~=—+—H,/N,inlet
i

Sample H,/N, pulses inlet
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{ Reactions of CO,MO;N

6 - 700 v 04-014-7439 Mo
d I __Temperature— b . « 01-082-3070 CoMo
s B i \ - 600 * 04-008-1301 Co;Mo;3N
2 __IJ_; ) / T m 500 § As-prepared * 04-017-2710 CogMogN
e N‘Ilijl ,'-'L" III —G *
S £ 5 | = | ™ \[ 490 ¢ : r_IL Le v s th e g
26 \\ \- 300 g H
a g o reduction v
2 ] s N 100 T v [ v
—2f - - L - -
0 - ' e —— 0
O 1 2 3 4 S 6 7 20 28 36 44 52 60 68 76 84 92 100
Time (h) 20 (%)

Two regions apparent in extended reduction experiments
Nearly constant rate — 331 (662) — 661
Linearly decreasing rate — 661 — Metal

SolarPACES | Albuquerque, NM, Sept. 27-30, 2022 | ASU LIGHTWORKS® | James E. Miller 11
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m ng h ;F‘ Reacted solid-state nitrogen

was calculated by adding Selectivity to NH; was

Steady production rates were

Arizona State University| calculated using averages of the last 2| NH, yield and two times of N, | calculated by percentage of
10 min of stabilized rate data before yield (theoretical max NH; yield in the reacted
cool-down CMN331-> CMN661 = 0.5) solid-state nitrogen

Steady Steady
Reduction Thold toid r(NH;) r(N,) NH; yield
step °C h 10> mol 10°mol | mol/mol,
molytst | molts?

N, yield Reacted solid-
mol/ state nitrogen
mol, mol mol?

Selectivity
to NH,

20 700
20 700
20 700

2.32 0.455 0.121 0.0610 0.243 49.8%
2.93 0.923 0.151 0.111 0.372 40.5%
4.27 0.985 0.271 0.113 0.498 54.5%
20 700 2.86 0.413 0.154 0.0496 0.253 60.8%
20 700 3.20 0.643 0.183 0.0742 0.331 55.2%

20 700 2 3.29 0.792 0.225 0.0842 0.393 57.2%

= All re-nitridation steps were performed with 20 bar of 10% H,/N, at 700 °C
= Sample held at 5 sccm H, / 15 sccm Ar overnight, 1.2 atm, 120 °C

Repetitions on single Co;Mo;N sample — Reaction is cyclic

N N N NN

—
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—

Production rate
(10> mol-molt-s1)

Q

w
w

¢ = D
O Lk oo

-

Temperature—- = 700

600
500
- 400
300
- 200
100

Time (h)

NH;, N, production rates and temperature profile of
representative reduction step under 100% H, (Cycle 6)

(D,) @amesadwal

Initial NH; peak assumed to be hydrogenation of
surface adsorbed N,

At T > 600 °C, consistent co-production of NH; and
N, in 100% H, (no external N, feed)

Production rates fairly flat in all the reduction steps
with no evident dependence on the consumed solid-
state nitrogen.

Sample can be re-nitridized under 100% N, at same
with no side-reactions observed

P =20 bar, T =700 °C for both reactions

Results imply that lattice nitrogen participates in NH; production
in reversible CMN331 - CMNG661 bulk reaction

SolarPACES | Albuquerque, NM, Sept. 27-30, 2022 | ASU LIGHTWORKS® | James E. Miller
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Y
-~

et

-

Intensity(Counts)

go00q{

5000

40004

3000

200{As-prepared
-

Lol

After reducti

PR

After re-nitridation
1000

g P

on
i i

04-008-1301= MozCosN - Meolybdenum Cobalt Nitride
04-017-2710= MosCosN - Cobalt Molybdenum Hitride

XRD of Co;Mo;N nitride in different
stages of the cycle demonstration

LW (A S

XRD Confirms Bulk Reduction and
Nitridation

CMN331 - CMN661 - CMN331

Ll
70 80 50

ol L
30

4.0 T y

s [ |.| —
L]
Two-Theta (deg)

5000

St

CMN331
CMNG61

44
Two-Theta {deg)

Partial conversion to 661 after reduction (both 331 and 661 phases observed), consistent with bulk
reacted nitrogen calculation of < 0.5

Regeneration to 331 after re-nitridation with no sign of secondary phase

SolarPACES | Albuquerque, NM, Sept. 27-30, 2022 | ASU LIGHTWORKS® | James E. Miller
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Reductio

20 600-720 0.5%5

Reacted solid-
state nitrogen
mol mol*?

NH; yield
mol/mol,

15  600-720 0.5%x5

T —

- T steps at

10 600-720 0.5x5

600-720 0.5%5

varying pH,

All re-nitridation steps were performed with 20 bar of 10% H,/N, at 700 °C
Sample held at 5 sccm H, / 15 sccm Ar overnight, 1.2 atm, 120 °C

Xiang, G., et al, “Sustainable Ammonia Production via a Novel Two-step Thermochemical Cycle of a Co;Mo;N/Co,MoN pair.” in prep, 2022.

SolarPACES | Albuquerque, NM, Sept. 27-30, 2022 | ASU LIGHTWORKS® | James E. Miller
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-

NH;, N, production
rates and selectivity

of reacted nitrogen to

NH; as a function of
reacted nitrogen in a

temperature stepping
reduction experiment

(20 bar, 100% H,, 8t
cycle)

[ Typical Data Set ]
3.5
—
Q 3
=
E
s 2.5
(]
£
5 2
=
@ |
o 1.5
c
2
S 1|
g
o
“ 05
|
0
0 0.05 0.1 0.15 0.2 0.25 0.3

Reacted N (mol/moly)

Selectivity continuously calculated (summed) over
entire run — i.e. not he instantaneous value

SolarPACES | Albuquerque, NM, Sept. 27-30, 2022 | ASU LIGHTWORKS® | James E. Miller
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( Conversion of bulk N to NH; and N, increases with T and P J
4,5 -

d . NH3 b 2.4 - N2

T 420 bar , |

35 - l/ = 120 bar

o . - /

E 3 2 16 -

2 25 - £ / 115

é 22 | // II e _g . ;"r‘ ,

& 15 Py 110 2 08 - oyl /

N PoL

05 - ‘l — o i#——r"”i 5 0.4 - ) }l,.-r‘" - }‘/,
e e
600 630 660 620 720 750 630 660 690 720 750
Temperature (°C) Temperature (°C)
NH; production demonstrated at slightly higher T and much lower P (~650 °C, ~20 bar)
compared to H-B (~450 °C, ~200 bar)
SolarPACES | Albuquerque, NM, Sept. 27-30, 2022 | ASU LIGHTWORKS® | James E. Miller 17
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Relative conversion of N (a.u.)

580

e o :
FSiLightWorks | Wiy 2
Arizona State University . S

Normalized N Conversion &
— (NH, + 2N,) —
Z?‘S
S
Z
3
0.0
6(I)0 620 6£I10 6(;0 GEISO 7(IJO 750 740 02
Temp (C)

0.8 -

0.6

0.4

0.2

1.0

- 0.8

- 0.6

- 04

- 0.2

0.0

+-0.2

Selectivity
—@— 5atm
—l— 10 atm
—— 15 atm
—@— 20 atm
_ ; oo
IQ"";./ < - 7 .« .
o o= “Excess Select|V|ty
580 6(I)0 650 6;10 6(;0 6;30 7(I)O 750
Temp (C)

Conversion increases with T

NH; selectivity decreases with increasing T but exceeds expectation

~650 °C Balances Rate and Selectivity

)
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hcti:';fatiun energies of N, and NH;

15.5 ~ 250
-15.5 ~
14.5 1 2[]0 1 _14-5 | ",riS bar
- 1 166.79 kI mol Lo
Bs{ 5 bar N, oo forreegenene 3 Al
@ e t _ 150 l Jf %15 %
g8 1A~ U Fazs | LTl
R T S {22%15{} s 1% ' 76.36 kJ mol™ £ 115 { ) nl
JogT f{. ___________ T e 3 S S } iP ?
-10.5 - T 50 -10.5 1 .
'9-5 1 1 1 D '9,5 | T T ]
0.001 0.00105 0.0011 0.0011: 0 5 10 15 20 25 0.001 0.00105 0.0011 0.00115
LT (K P(H,) (bar) YT

Use caution comparing catalytic vs bulk reaction, but ...
E_ ranges from 40 (HB) -120 kJ/mol for a variety of heterogeneous (HB) catalysts
E_ = 54 kdJ/mol reported for Cs-promoted Co;Mo;N, T = 320-440 °C, P = 50 bar

SolarPACES | Albuquerque, NM, Sept. 27-30, 2022 | ASU LIGHTWORKS® | James E. Miller 19
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Rate NH; formation = k,[H,]"5 ° Slmple analysis
e consistent with multi-
s | step mechanism for
o - NH; formation
%‘“ * (3/2 orderinH,)
T . Favorable Energetics
O — -

I Reaction Ea (kJ/mol) Order in
(mol/ mol,- [H2}
580 6(I)0 650 64IfO GEISO GEIBO 7(I)0 750 740 S)

Temp (C) 0.00463 76.4

NH3 ~ 350
thermolysis

SolarPACES | Albuquerque, NM, Sept. 27-30, 2022 | ASU LIGHTWORKS® | James E. Miller 20
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Mol N,/mol-s

A (mol/mol-S) Ea (kJ/mol) Order in [HZ}

2.5e-5 0.00463 76.4
— am N2(1) 2.59x1016 390 0
2.0e-51 | —— 15atm .
N2(2) 0.00274 98 ~ 2
1.5e-5 A .
NH; thermolysis ~ 350
1.0e-5 1.2e-5
K, .
1.0e-5 - kz[Hz]1'5“ (5 atm) O Order |n H
5.0e-6 - 10 atm _
15 atm
8.0e-6 20 atm :
0.0 P
BZ 6.0e-6
E
580 6(I)0 650 64I10 6(;0 6EI30 7(I)0 750 740 % 4.0e-6
Temp (C) = -
2.0e-6 ~ - o
Rate N, formation = k, + k,[H]? . ——_———
N, rates consistent with - | |
. 580 600 620 640 660 680 700 720 740
multiple pathways Tomp (€)

SolarPACES | Albuquerque, NM, Sept. 27-30, 2022 | ASU LIGHTWORKS® | James E. Miller 21
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* Ternary nitrides in the family A;B,N (A=Co, Ni, Fe; B=Mo; x=2,3) identified and
synthesized

* Experiments with Co;Mo;N in Ammonia Synthesis Reactor demonstrate cyclable NH,
production from bulk nitride under pure H,

— Production rates were approx. constant in all the reduction steps with no evident dependence on the
consumed solid-state nitrogen up to formation of 661

— Material can be re-nitridized under pure N, (or 10% H,/N,)

— Bulk N utilization per reduction step averaged between 25 — 40% of the total (2-3 hours)

— Rate equations and parameters extracted from data.

— NH; selectivity exceeds gas phase equilibrium at higher temperatures (in a large excess of H,)

— Selectivity begins to decrease significantly above 650 C, N, production rapidly increases above 650 C
seemingly due to reaction that is zero order in H, (thermal reduction of the nitride?).

e Poised to begin the systematics studies of relationships between materials and reactions

SolarPACES | Albuquerque, NM, Sept. 27-30, 2022 | ASU LIGHTWORKS® | James E. Miller 22
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Why Multiple Metals are Required

Nitridation Ammonia Formation
30 40
20 4
1000 atm_ — — 309
20 4
= _ 1000 atm— "~
£ 2 -
£ £
£ ¢
B o
30 —— 4Fe + N2(g) = 2Fe2N
4Mo + N2(g) = 2Mo2N 20— 2FeN + 3H2(g) = 2NH3(g) + 4Fe
2Mo2N + 3H2(g) = 4Mo + 2NH3(g)
-40 T T T T _30 I T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Temperature (C) Temperature (C)
Black lines:  Equilibrium pN, Equilibrium pH, = pNH,

SolarPACES | Albuquerque, NM, Sept. 27-30, 2022 | ASU LIGHTWORKS® | James E. Miller 25
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