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Solar Thermal Ammonia Production

Motivation
◦ NH3 production accounts for 1.8%† global CO2 

emissions
◦ Concentrated solar has many advantages for industrial 

process heating, chemical reaction engineering

Solution
 Two-stage, two step process

 Stage 1: N2 production
◦ Step 1: Thermal reduction
◦ Step 2: Air separation

 Stage 2: NH3 production
◦ Step 1: Ammonia synthesis
◦ Step 2: Re-nitridation (regeneration)
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† - https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf



Solar Thermochemical Air Separation

N2 Separation Material
 Undergoes thermal reduction, air separation (oxidation)
 Recyclable metal oxide (MOx) oxygen getter/carrier

◦ Perovskite oxide
◦ Oxygen vacancies (VO) cyclically created and filled
◦ Rapid oxygen diffusion
◦ Continuous reduction/oxidation with T, pO2

◦ Materials studies:
SrFeO3-δ → (Ba,La)xSr1-xFeO3-δ → BaxSr1-xFeO3-δ → 

Ba0.15Sr0.85FeO3-δ BSF1585

Reactor Demonstrations
 Two reactors:

◦ Stationary vertical packed bed: air separation, cycling
◦ On-sun inclined flow: thermal reduction
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Dispersion Characterization

 Necessary to separate chemical reaction behavior from reactor 
behavior

 Dispersion: diffusion of gas along flow direction 

 Dispersion correction needed for 1:1 model to experiment 
comparison

 Reactor found to have significant lag, minimal dispersion

 Correction Method:
1. Introduce tracer gas (with known time profile) through system
2. Measure outlet concentration of tracer over time
3. Compare input and output profiles to calculate residence time 

distribution (RTD)
4. Use RTD to correct all experimental measurements to remove 

dispersion effects

Parameter Value
Number of Tanks 8.0

Space Time (s) 179

Lag (s) ~90



Air Separation Experiments

Experimental Work:
 Air separation studied via parametric analysis of 
reduction, air separation temperatures, multi-
cycling

 Error propagation analysis performed to obtain 
95% CI on O2 percentage measurements

 Model validations currently being performed

Procedure:
◦ Multi-point calibration with 100 ppm O2 in N2 

and air
◦ Sample heated and thermally reduced under 

air
◦ Air purge of excess O2 
◦ Sample cooled to perform air separation
◦ Purged under air until O2 removal ceases (fully 

reoxidized)

O2 Calibration Example

800°C Reduction, 400°C Separation 

calibration reduction & purge air separation



Air Separation Experiments

Results
 Cyclic thermal reduction followed by separation, all under air

◦ Sharp front in O2 profile suggests thermodynamic limit

 Parametric analysis for thermal reduction, separation T
◦ Higher T, Larger ΔT produces purer N2

 Multi-cycle experiments show repeatable separation
◦ Break-in due to higher initial oxidation state (O2 release)
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Directly Irradiated Incline Flow Reactor

 Characteristics
◦ Directly irradiated cavity receiver, water cooled quartz window
◦ Thermal input from high flux solar simulator (HFSS)
◦ Flowing inclined bed of BSF1585
◦ Heated 5 kg hopper with linear actuator-controlled valve
◦ Collection and measurement of product O2

◦ Load cell to measure flow rate
◦ Thermocouples for particle and cavity measurements

 HFSS
◦ Vertical axis
◦ Four lamps
◦ Metal Halide
◦ 1.8 kWe

◦ Ellipsoidal reflectors
◦ Common focus



Reactor Development

 Work to Date:
◦ Design, modeling, and fabrication
◦ Particle flow calibration and cold tests
◦ Measurement and controls implementation

 Next Steps
◦ Operate on-sun reactor with inert media for validation
◦ Perform thermal reduction experiments with BSF1585
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Conclusions

◦ Two reactors designed, constructed, and tested for solar 
thermochemical air separation with BSF1585

◦ Dispersion characterization and cyclic air separation demonstrated with 
packed bed tube furnace

◦ N2 purity enhanced for high temperatures and temperature swings

◦ Rapid kinetics, thermodynamic limits in air separation apparent

◦ High repeatability observed over 50 cycles 

◦ Construction and particle flow testing performed for on-sun thermal 
reduction reactor for use with solar simulator
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