

# INFERRING TOPOLOGICAL TRANSITIONS IN PATTERN-FORMING PROCESSES VIA SELF-SUPERVISED LEARNING

SIAM CONFERENCE ON MATHEMATICS OF DATA SCIENCE (MDS22)  
SEPTEMBER 29, 2022

RÉMI DINGREVILLE ([RDINGRE@SANDIA.GOV](mailto:RDINGRE@SANDIA.GOV)) | SANDIA NATIONAL LABORATORIES  
MARCIN ABRAM, KEITH BURGHARDT, GREG VER STEEG, ARAM GALYSTAN | UNIVERSITY OF SOUTHERN CALIFORNIA

# CLASSICAL THEORIES OF PHASE TRANSITION RELY ON DISCONTINUITY

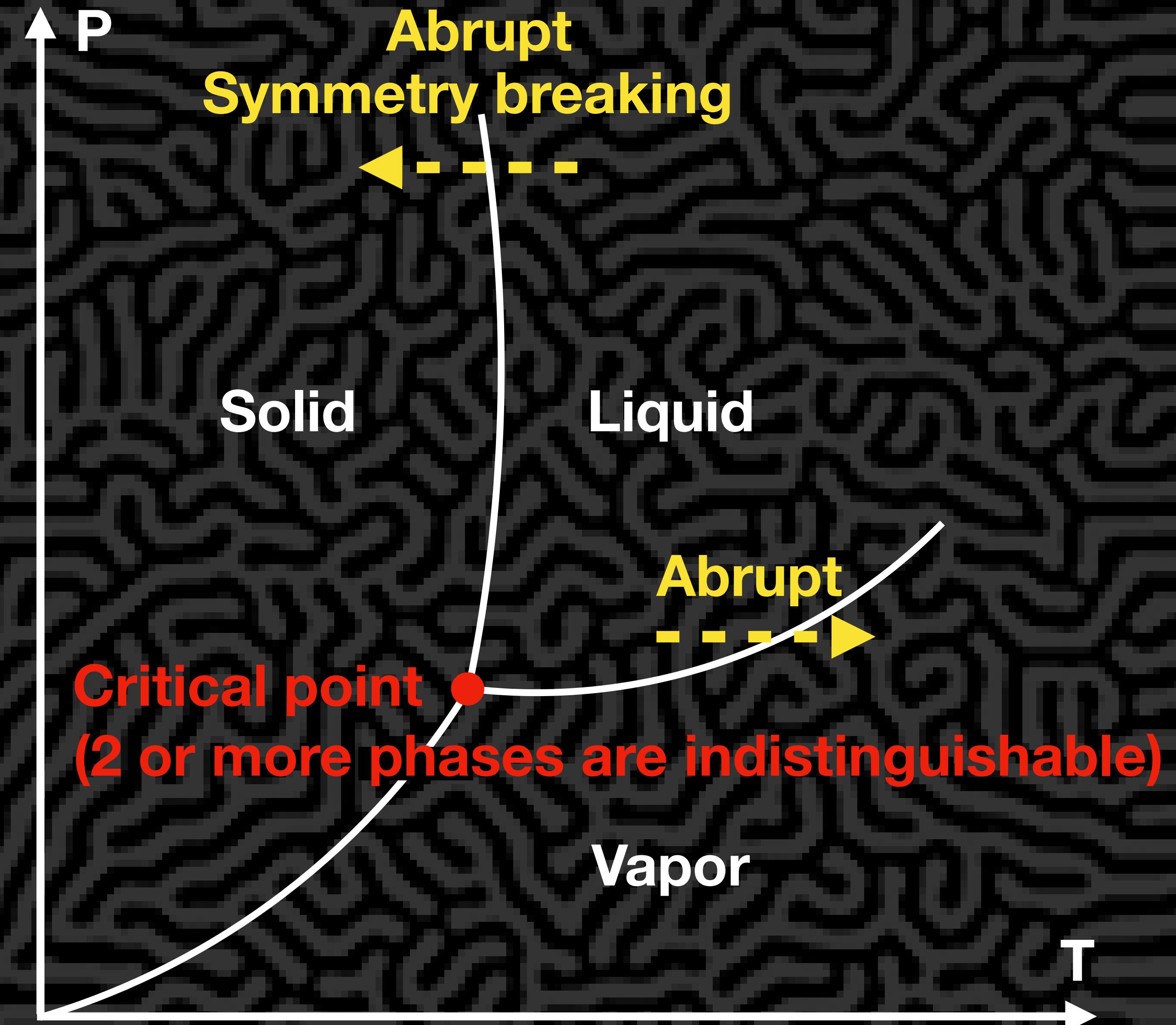
**Landau Theory:**  
Transition described  
by an abrupt change  
in order parameter  
(or its derivative)

## Phase transition

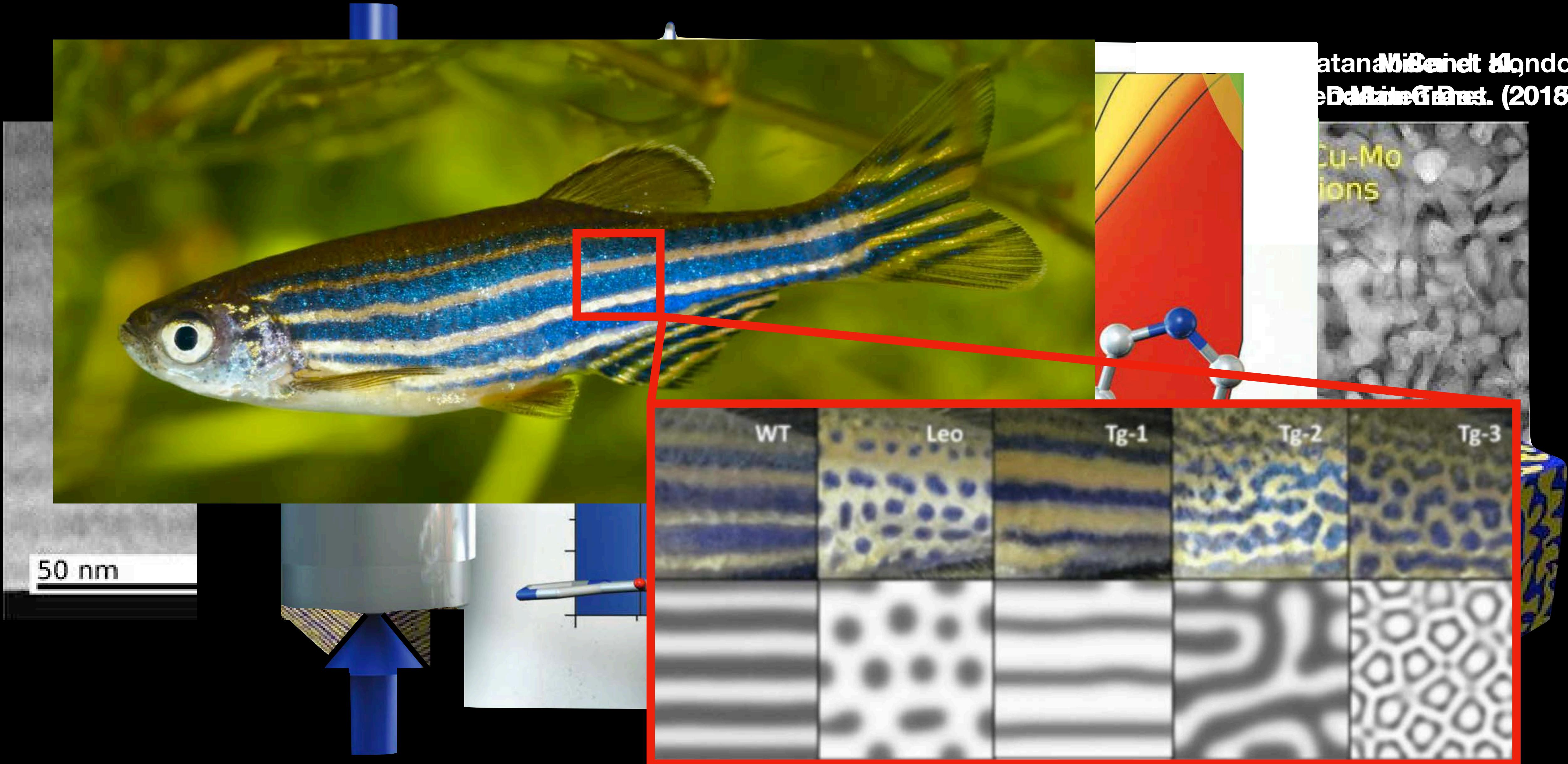
paramag  $\leftrightarrow$  ferromag  
liquid  $\leftrightarrow$  gas  
liquid  $\leftrightarrow$  solid

## Order parameter

magnetization  
density  
shear modulus

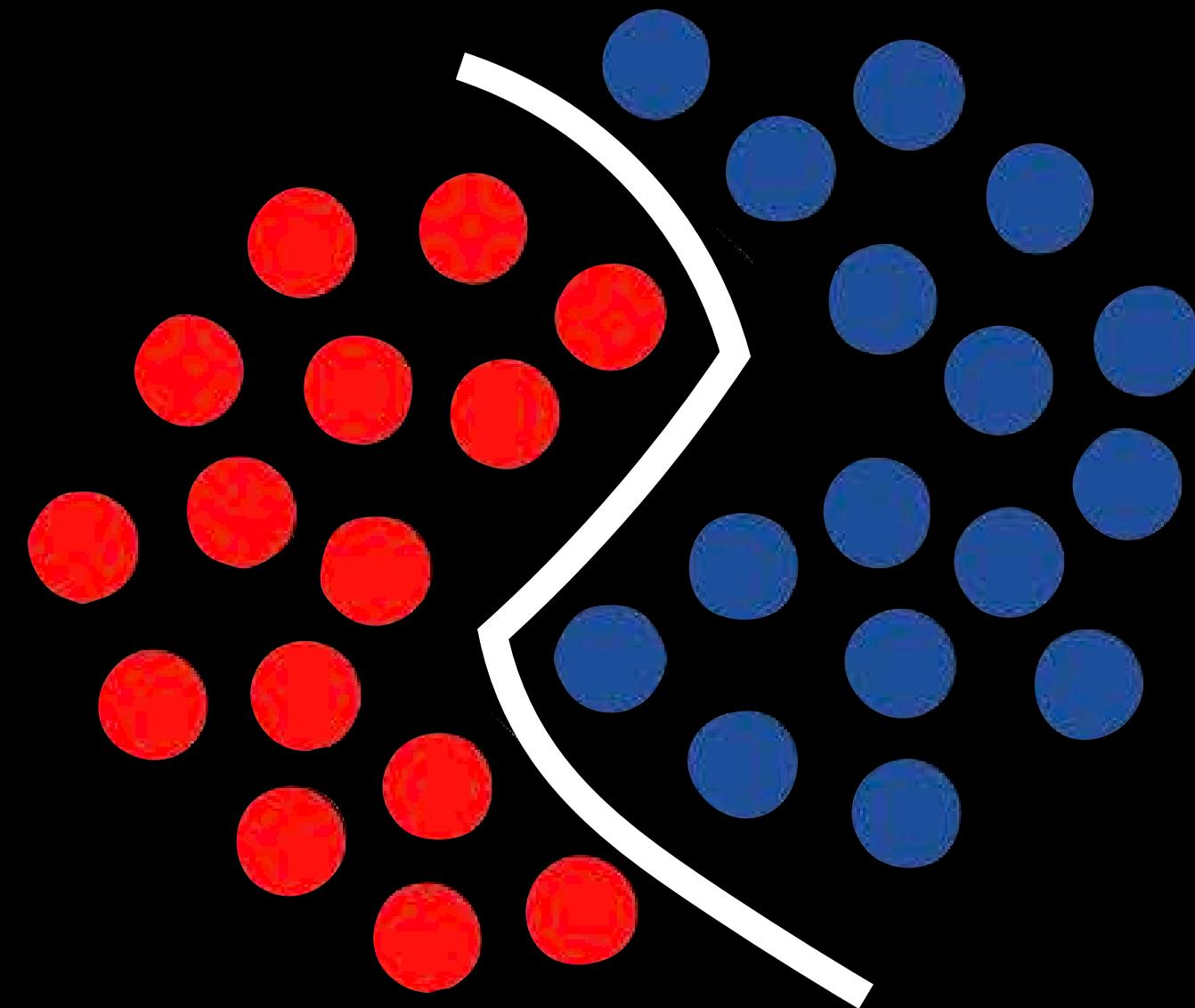


# MANY PATTERN-FORMING PROCESSES ARE GRADUAL AND CANNOT BE DESCRIBED BY CLASSICAL TRANSITION THEORIES



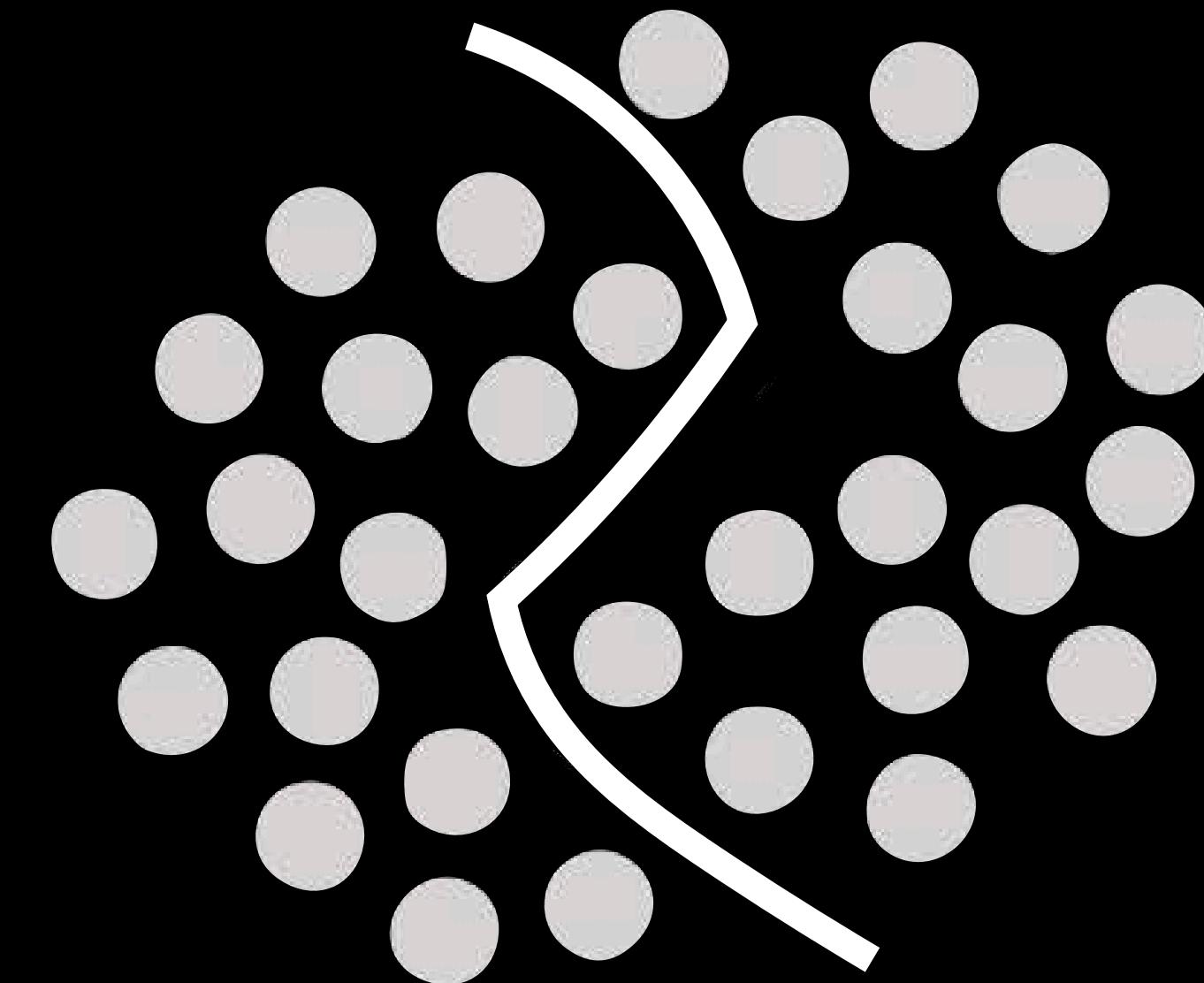
# FROM A MACHINE LEARNING PERSPECTIVE: THIS IS A CLASSIFICATION PROBLEM

## Supervised



- Need labels to learn
- Requires prior knowledge

## Unsupervised

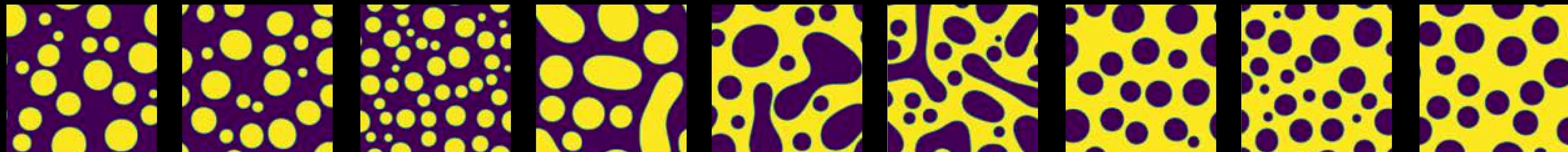


- Does not need labels
- Use clustering for classification

# EXAMPLES OF PATTERN-FORMING PROCESSES

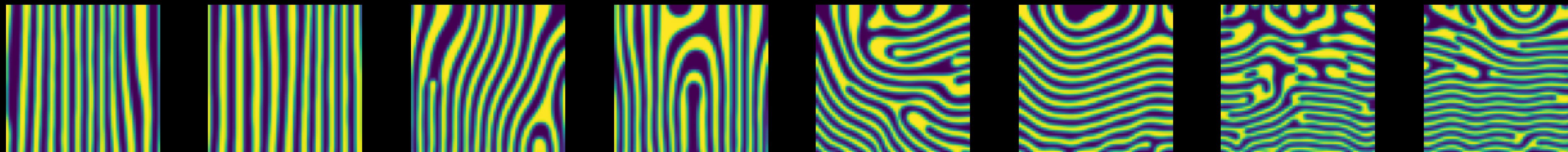
- **Spinodal decomposition**

- Process parameters: mobility of phase A and B, phase fraction
- Transition expected to occur for 50% phase fraction (A-rich vs. B-rich)



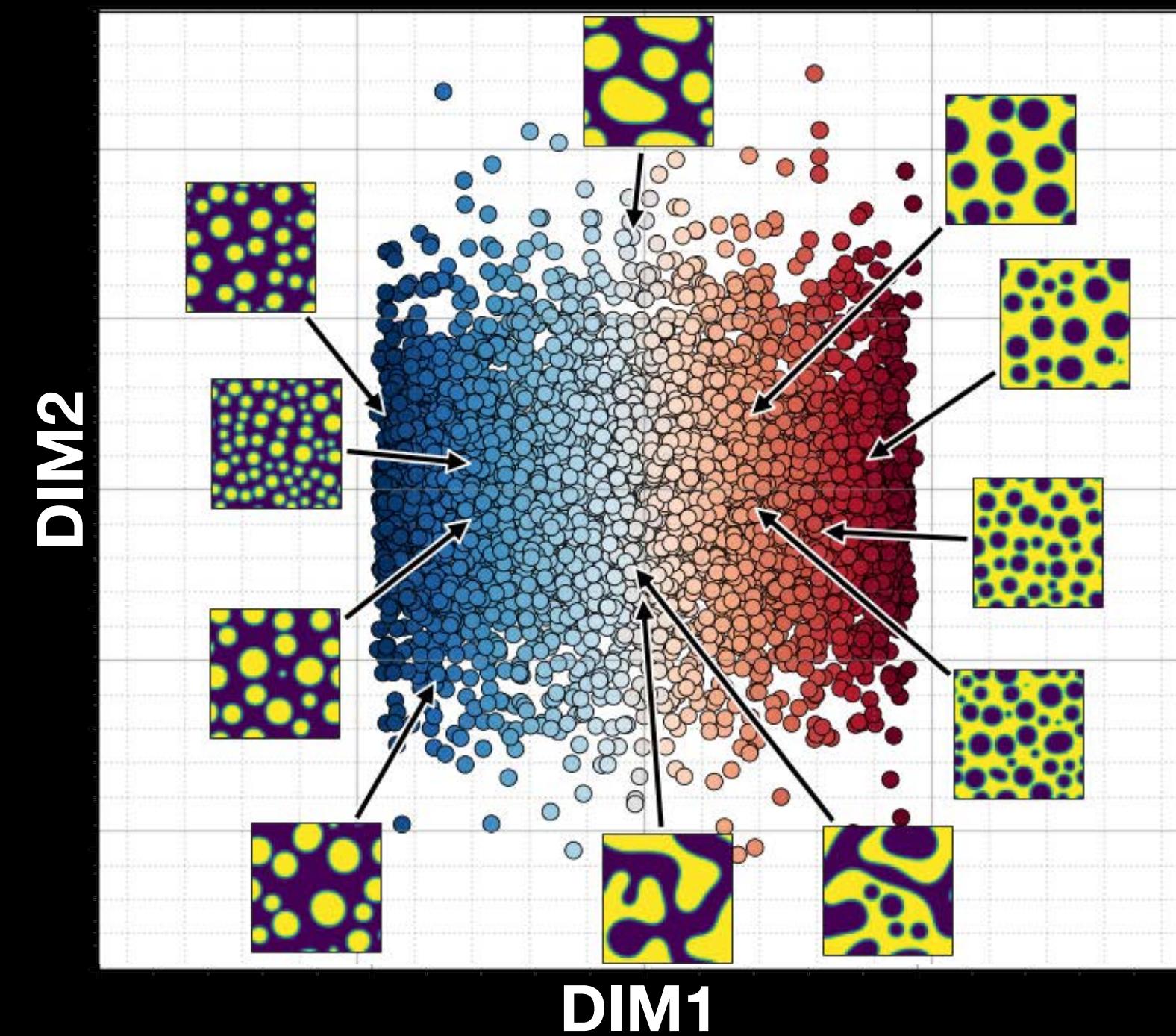
- **Physical vapor deposition**

- Process parameters: deposition rate, deposition angle, phase mobility
- vertical-oriented, horizontal-oriented, random-oriented

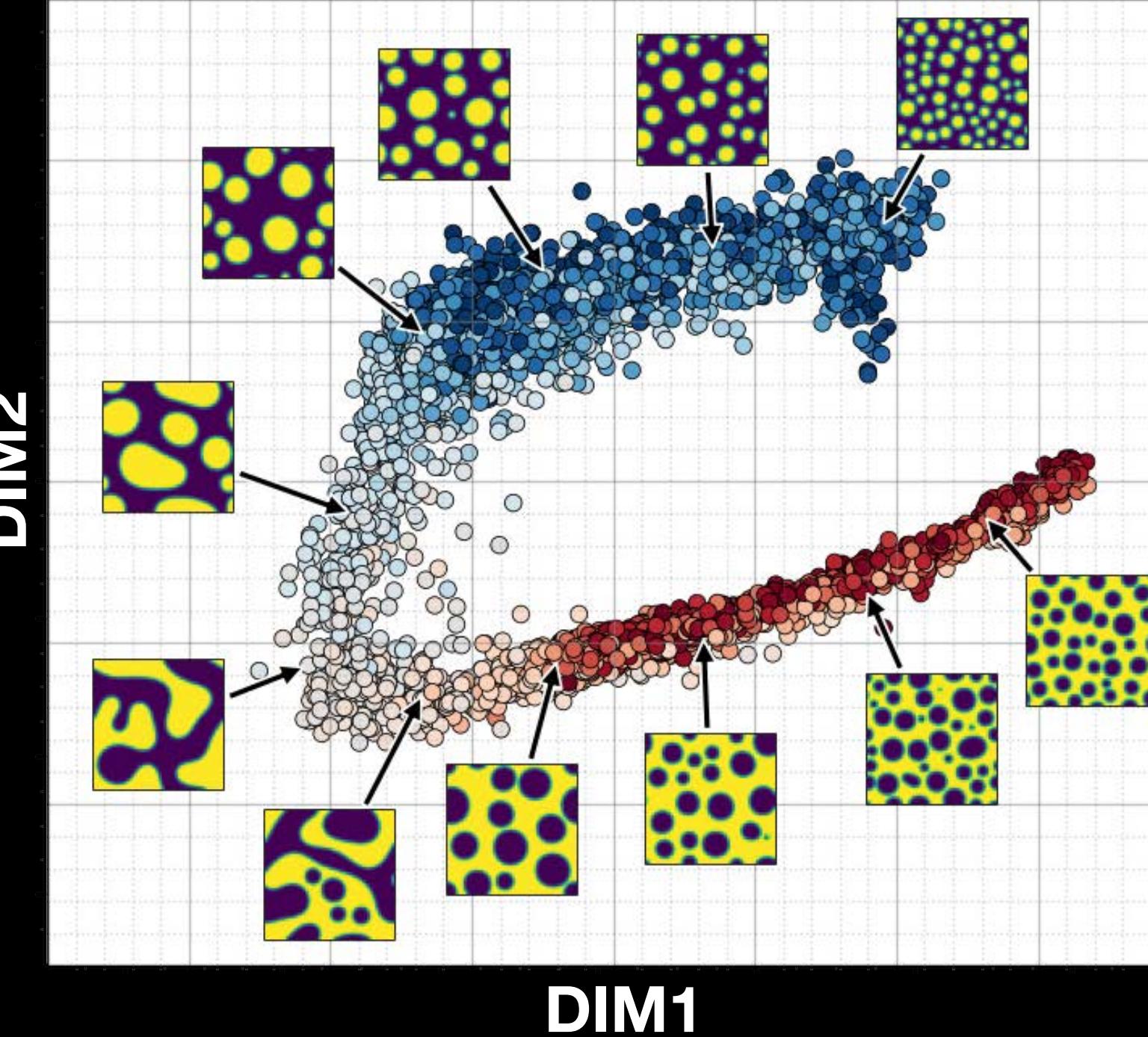


# THE AMBIGUITY OF IDENTIFYING TOPOLOGICAL TRANSITIONS FOR HIGH-ORDER & DYNAMIC TRANSITIONS

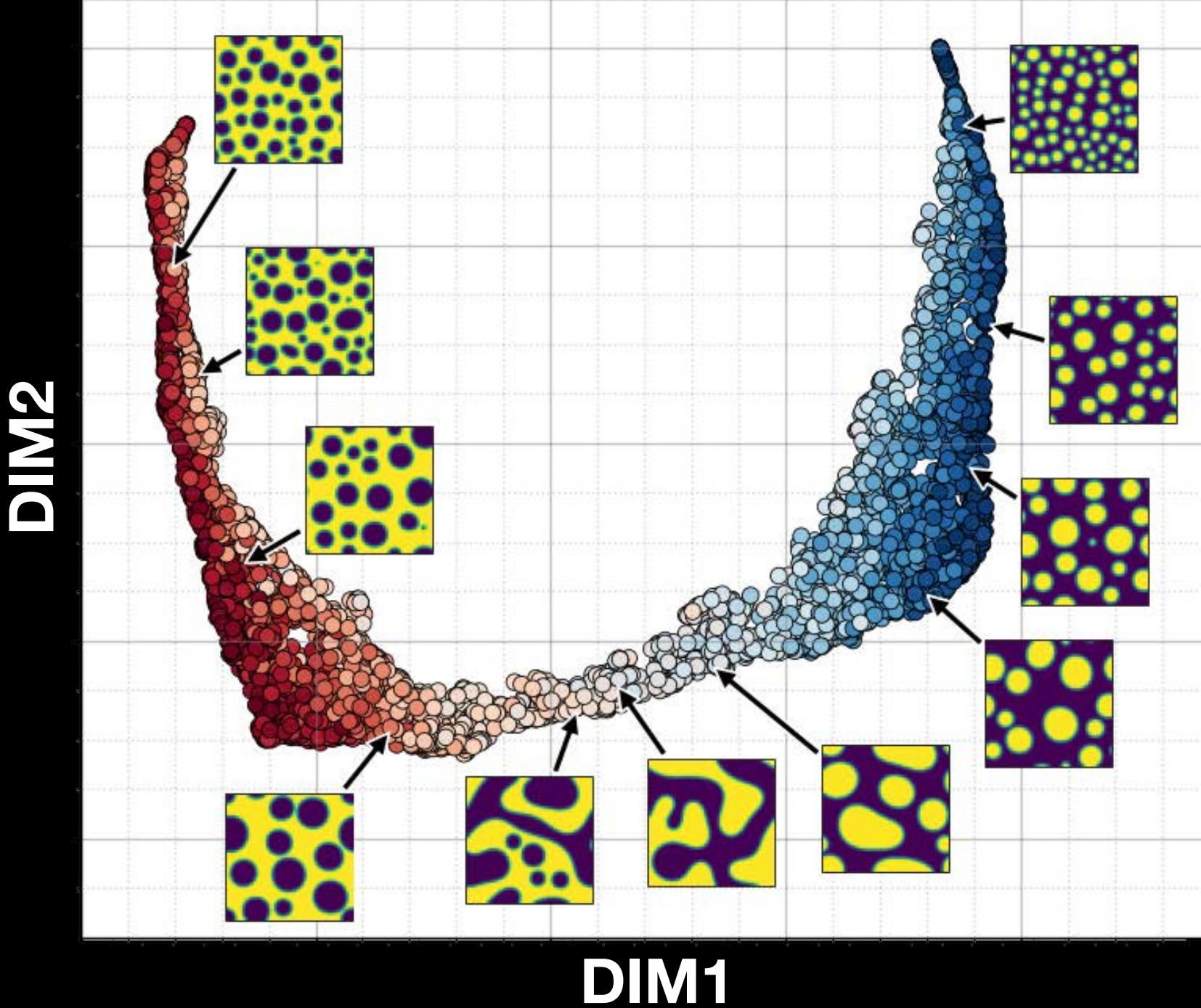
PCA  
on microstructure image



PCA + ResNet  
on microstructure image

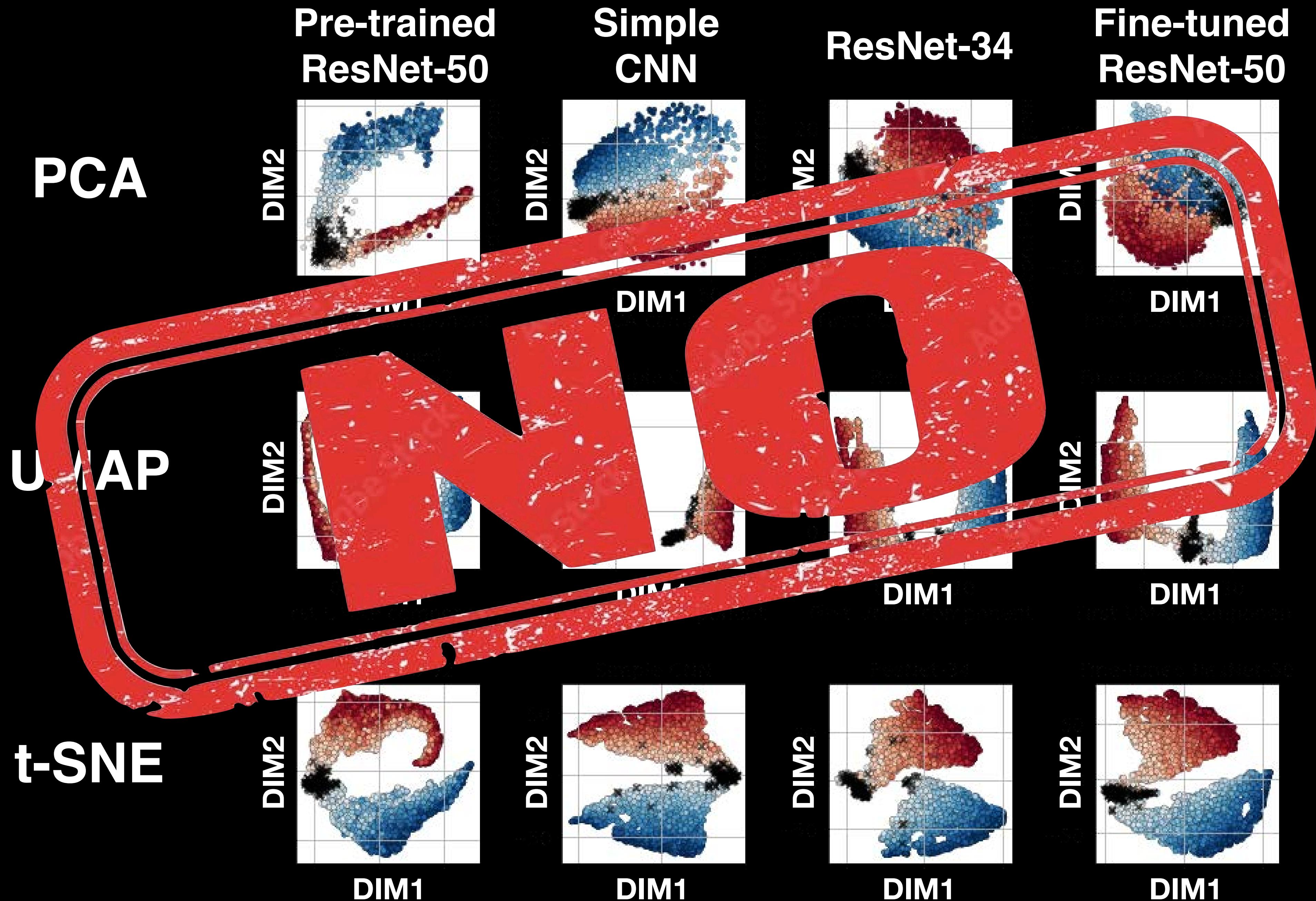


UMAP + ResNet  
on microstructure image

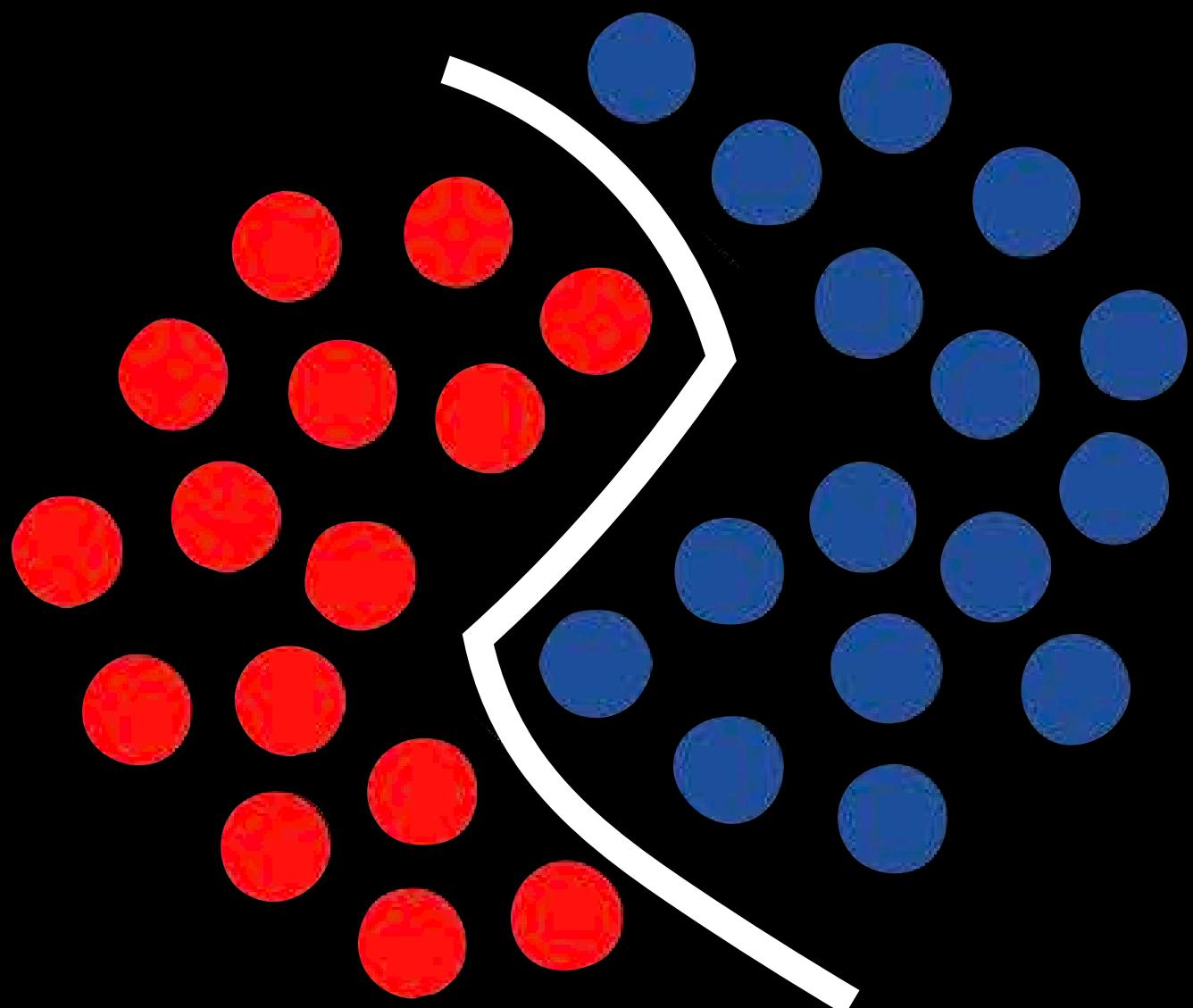


- Gradual changes in microstructure patterns when process parameters vary
- No clear clustering in low-dimensional space

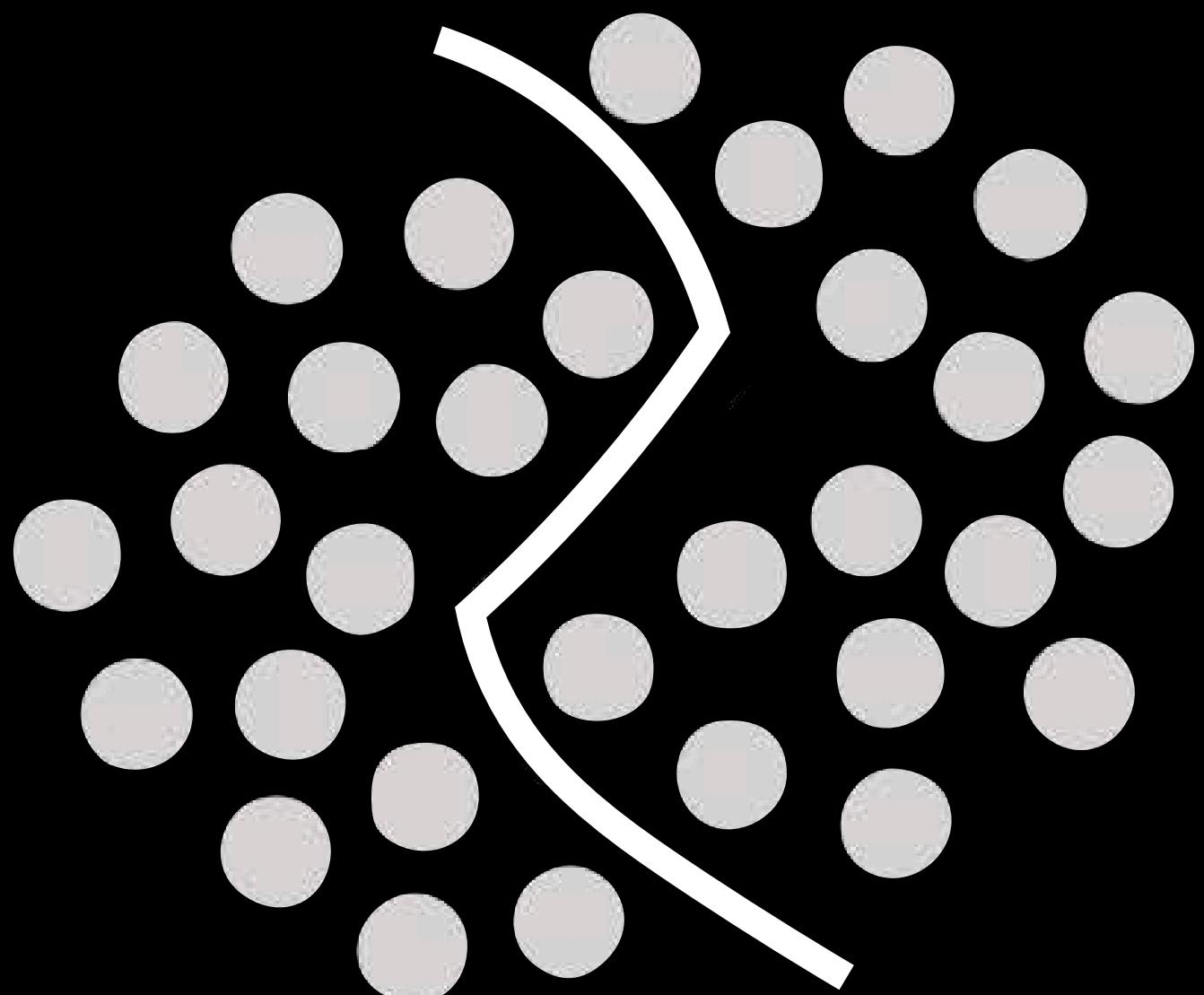
# DOES THE CHOICE OF PROJECTION METHOD MATTER?



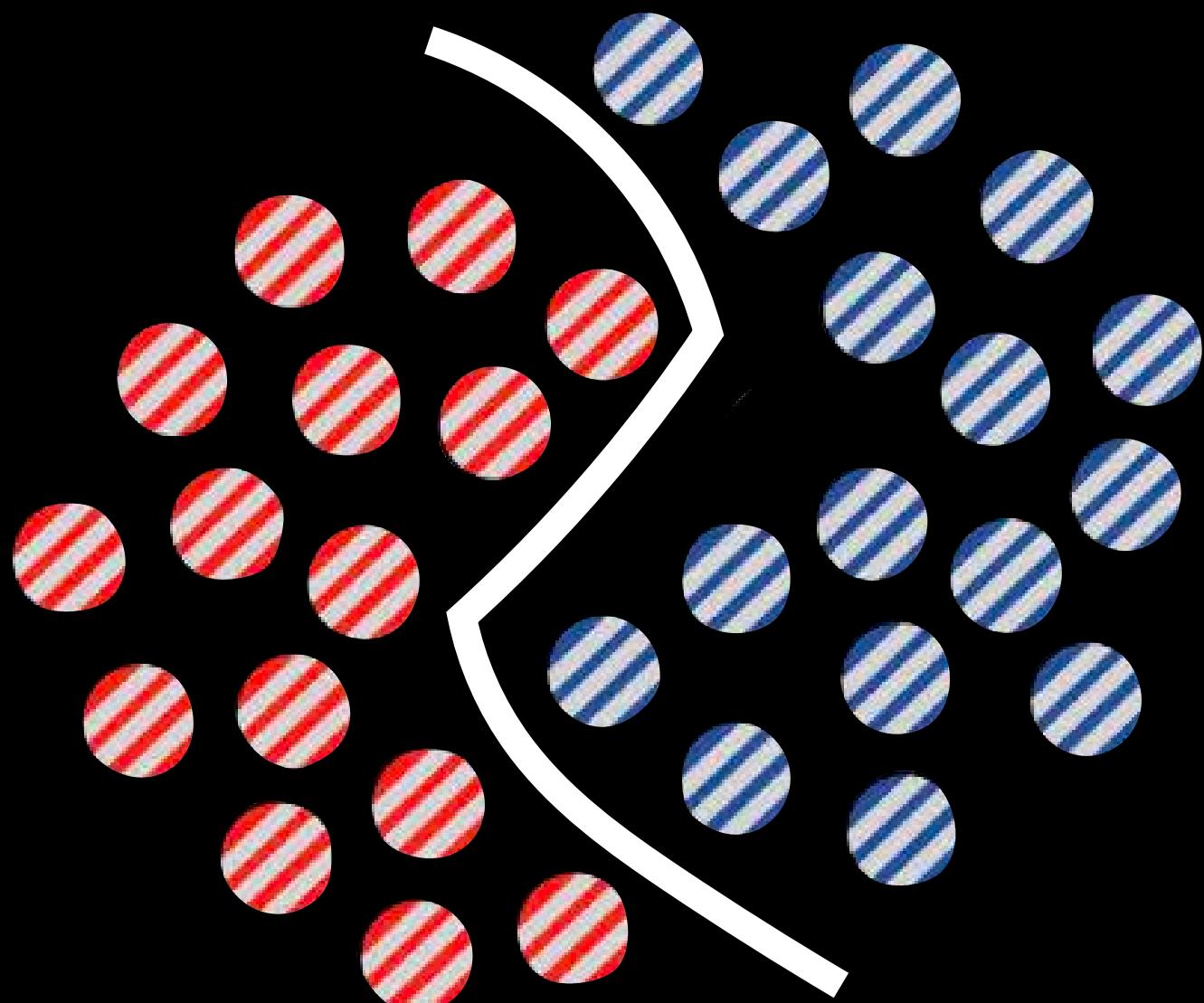
## Supervised



## Unsupervised



## Self-supervised

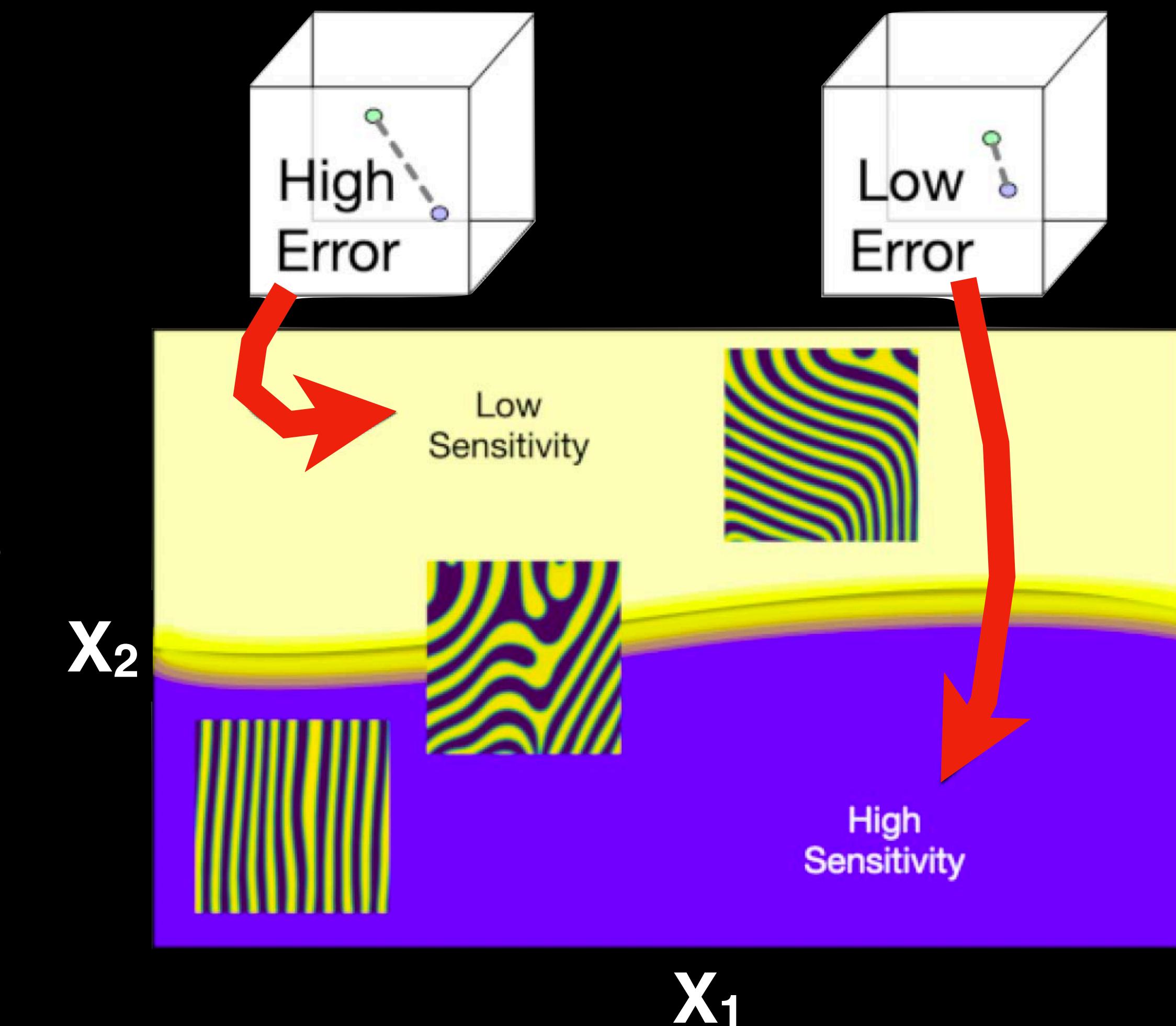


- Need labels to learn
  - Requires prior knowledge
- Does not need labels
  - Use clustering for classification

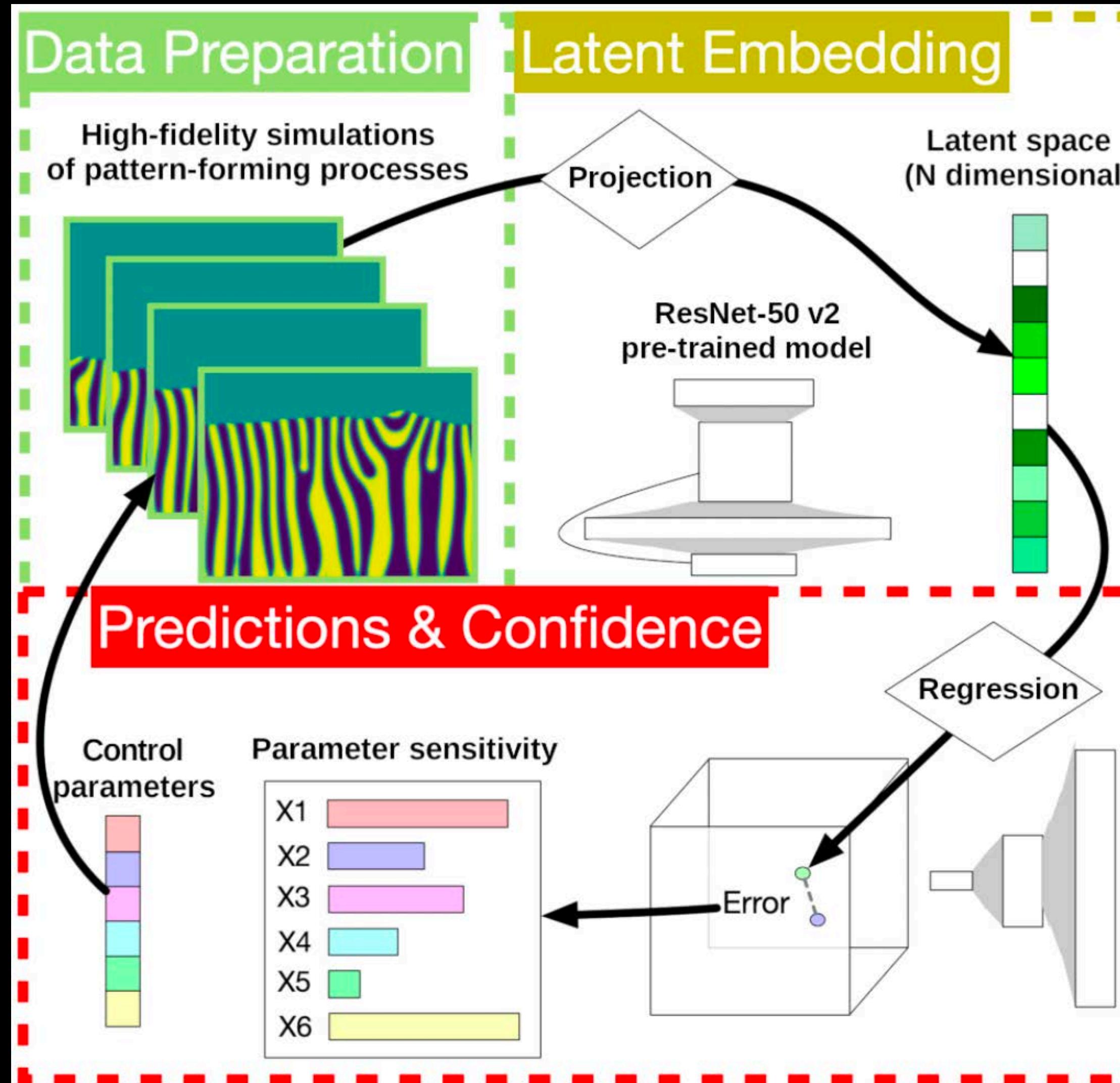
- Does not need labels
- Solve an auxiliary (easier?) problem closely related and semantically connected

# RE-DISCOVERING THE CRITICAL POINT (UNIVERSALITY)

Predicting process  
parameters from  
observed patterns



- **High sensitivity:** we are able to predict the input process parameter accurately
- **Low sensitivity:** relation between input process parameter and pattern is weak
- **When score changes** from low to high or high to low, may indicate a transition
- Analogy to critical point and **universality** in dynamical systems



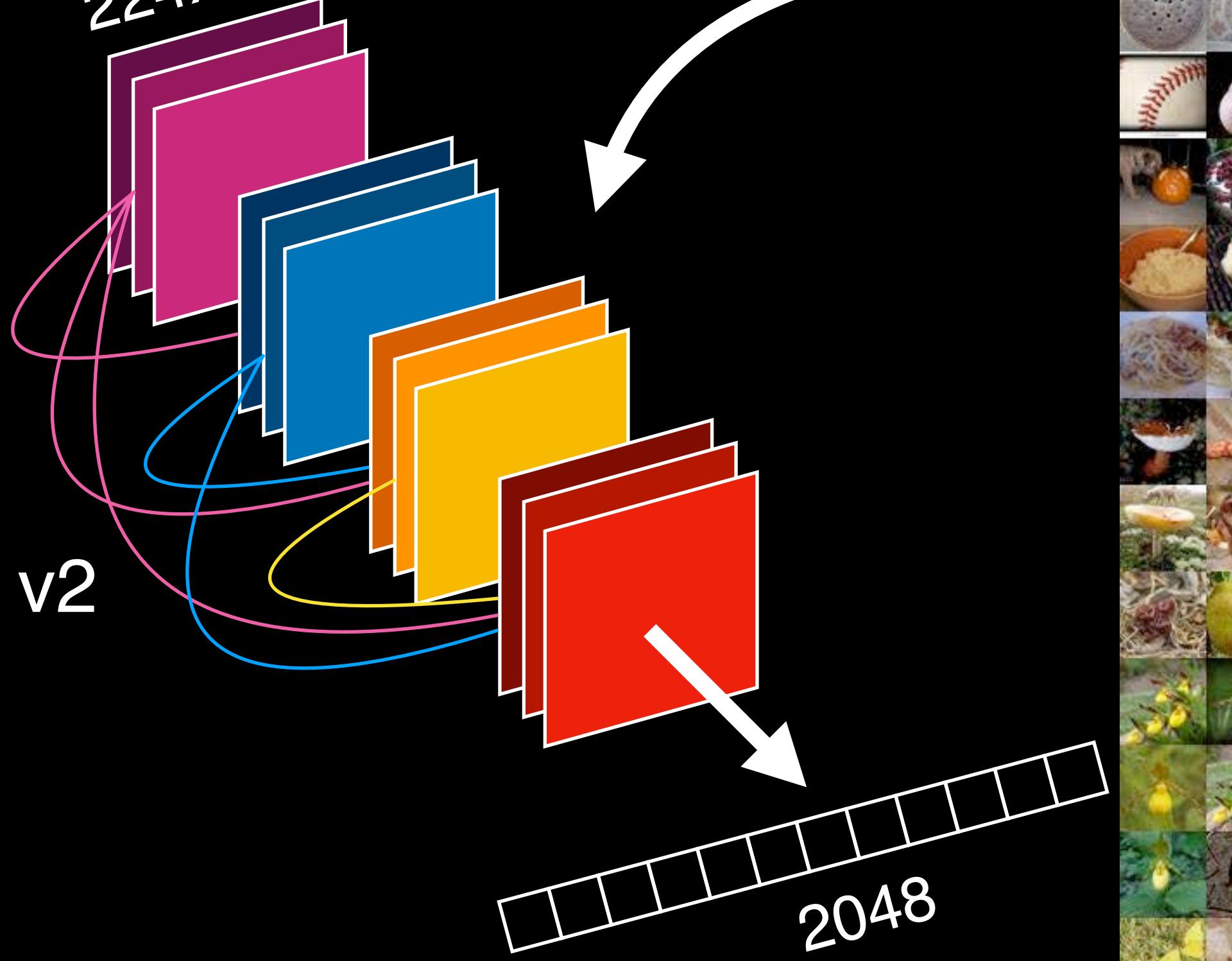
1. Large and diverse set of pattern regimes
2. Pre-trained CNN (ResNet-50 v2 model) to represent microstructure in latent space
3. Use feed-forward NN to regress input process parameters from observed microstructures
4. Evaluate errors between predictions and ground truth

EMBED:



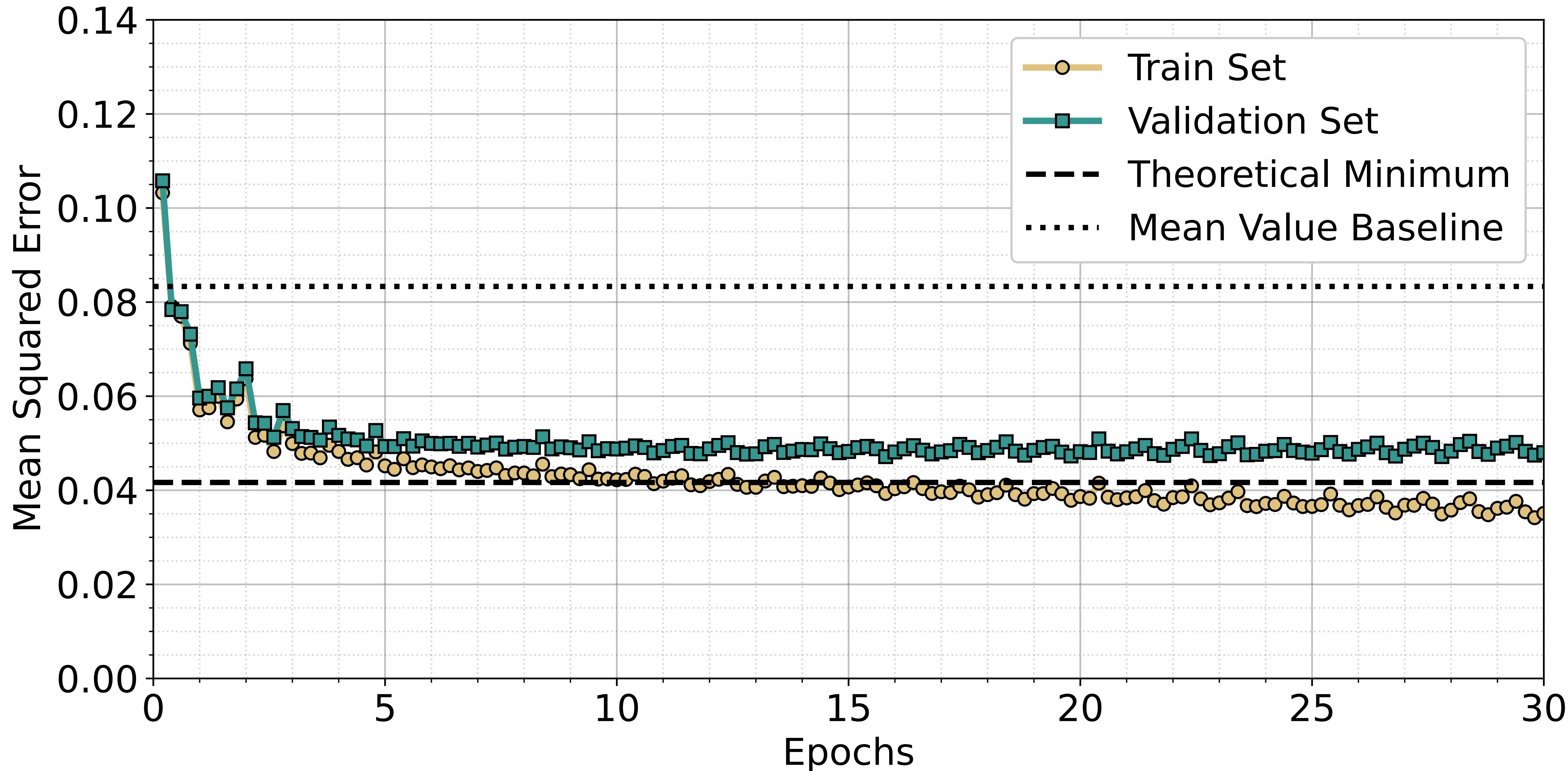
224x224

ResNet-50 v2



Training using  
ImageNet  
database





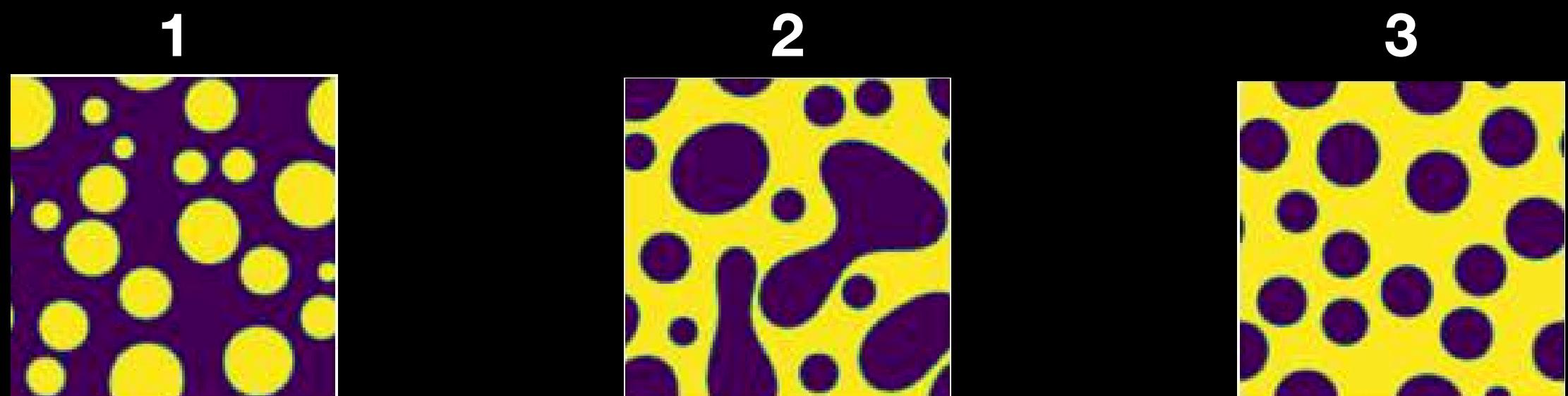
# EVALUATE:

$$S = N / \sum_i^N |\hat{y}_i - y_i|$$

Predicted      True



- **High  $S$ :** we are able to **predict** the input parameter **accurately**
- **Low  $S$ :** relation between input parameter and pattern is **weak**
- **When score changes** from low to high or high to low, may **indicate a transition**



| Instance | Predicted/Target<br>mobility A | Predicted/Target<br>mobility B | Sensitivity score<br>(Mobility A/B) |
|----------|--------------------------------|--------------------------------|-------------------------------------|
| 1        | 0.37/0.97                      | <b>0.44/0.50</b>               | <b>1.77/15.53</b>                   |
| 2        | 0.24/0.04                      | 0.36/0.75                      | 4.96/2.58                           |
| 3        | <b>0.41/0.51</b>               | 0.46/0.84                      | <b>10.16/2.64</b>                   |

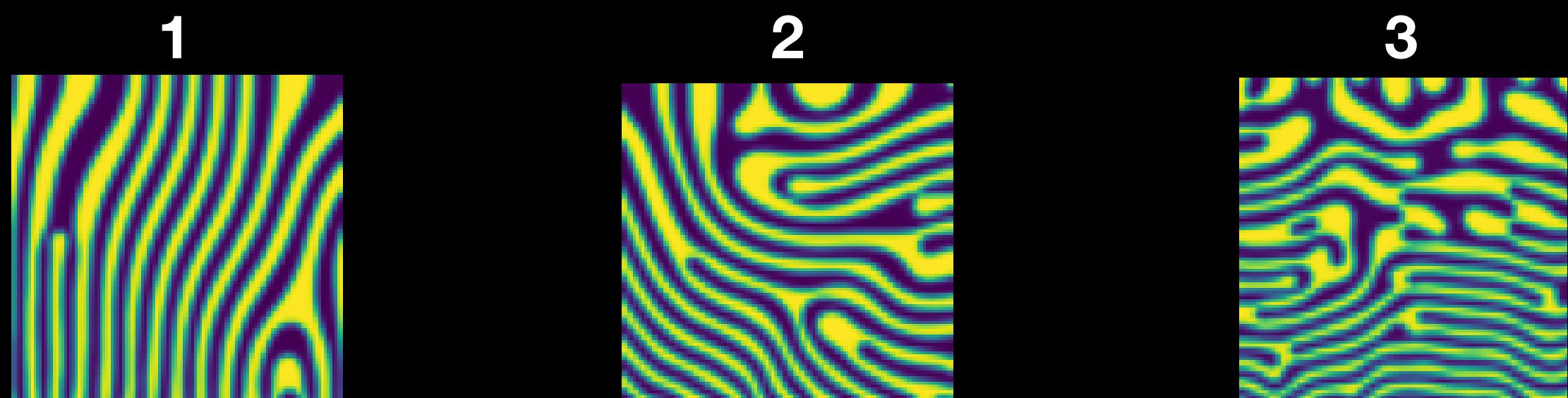
# EVALUATE:

$$S = N / \sum_i^N |\hat{y}_i - y_i|$$

Predicted      True

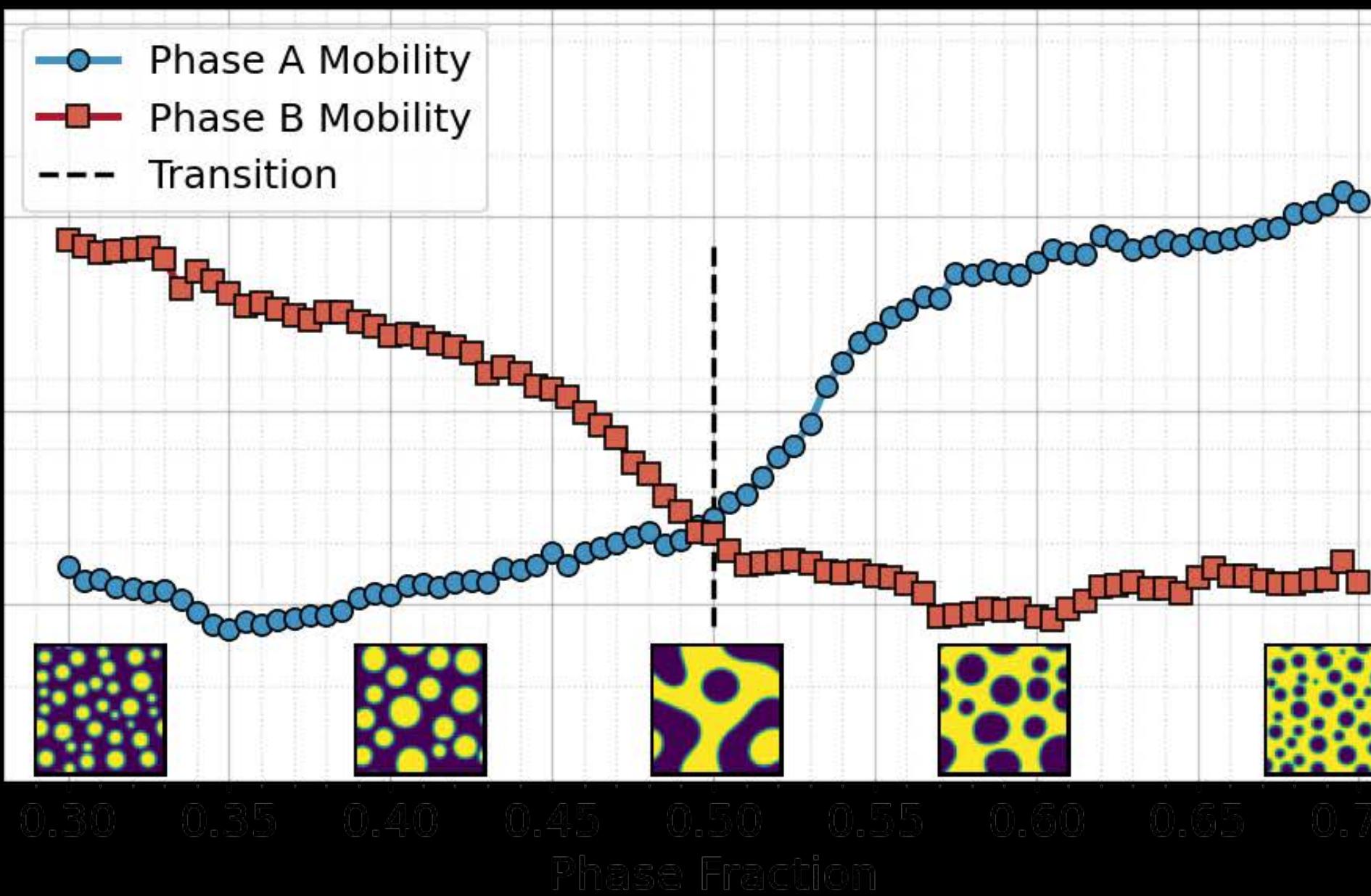


- **High  $S$ :** we are able to **predict** the input parameter **accurately**
- **Low  $S$ :** relation between input parameter and pattern is **weak**
- **When score changes** from low to high or high to low, may **indicate a transition**

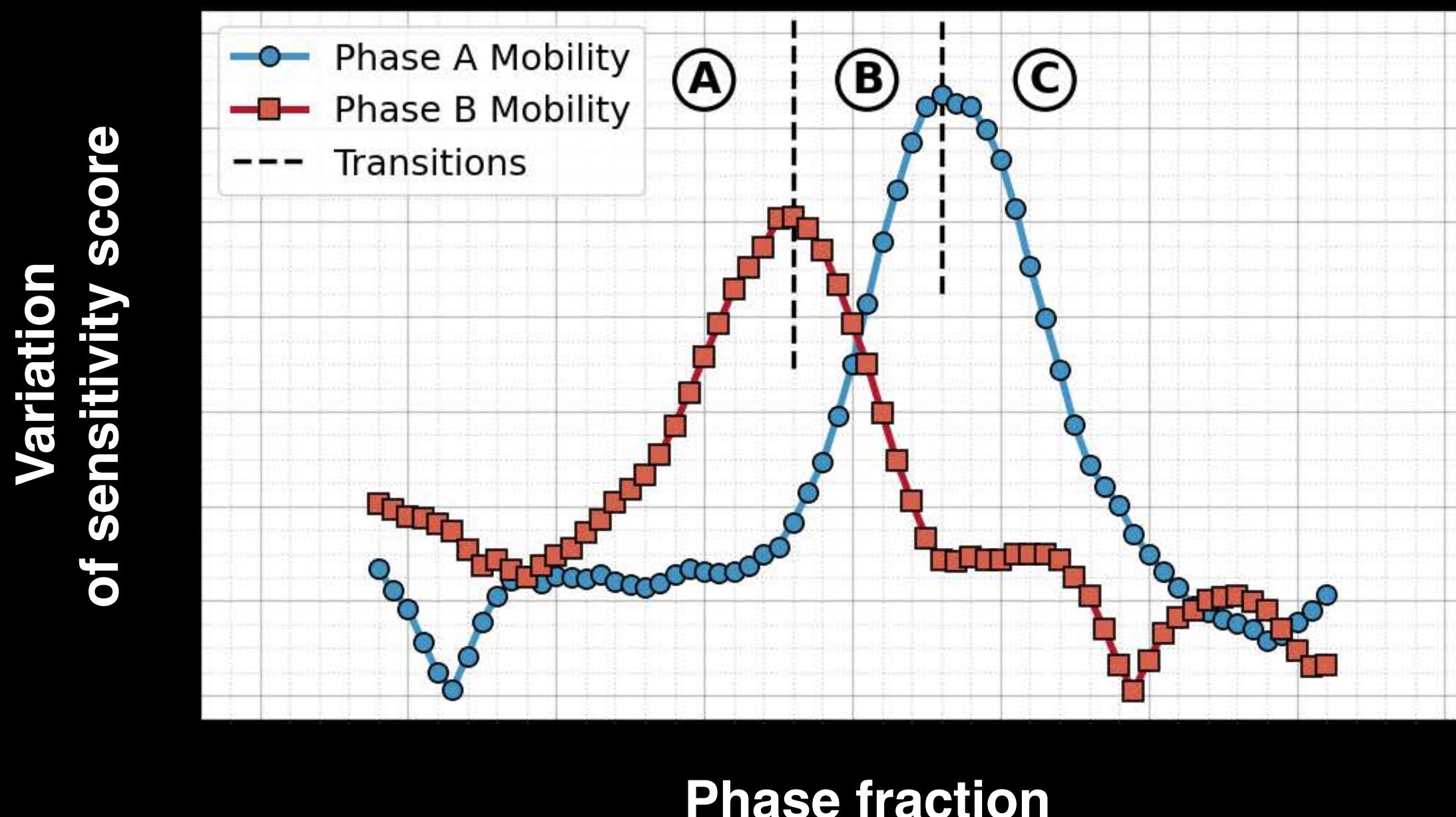


| Instance | Predicted/Target<br>deposition rate | Predicted/Target<br>bulk mobility | Sensitivity score<br>(deposition rate/mobility) |
|----------|-------------------------------------|-----------------------------------|-------------------------------------------------|
| 1        | 0.32/0.26                           | <b>4.09/4.68</b>                  | 19.31/ <b>1.68</b>                              |
| 2        | 0.77/0.96                           | 3.51/5.40                         | 5.15/0.53                                       |
| 3        | <b>0.75/0.79</b>                    | 1.96/2.22                         | <b>20.58/7.01</b>                               |

# IDENTIFYING TOPOLOGICAL TRANSITIONS: REGIMES & COMPLEXITY

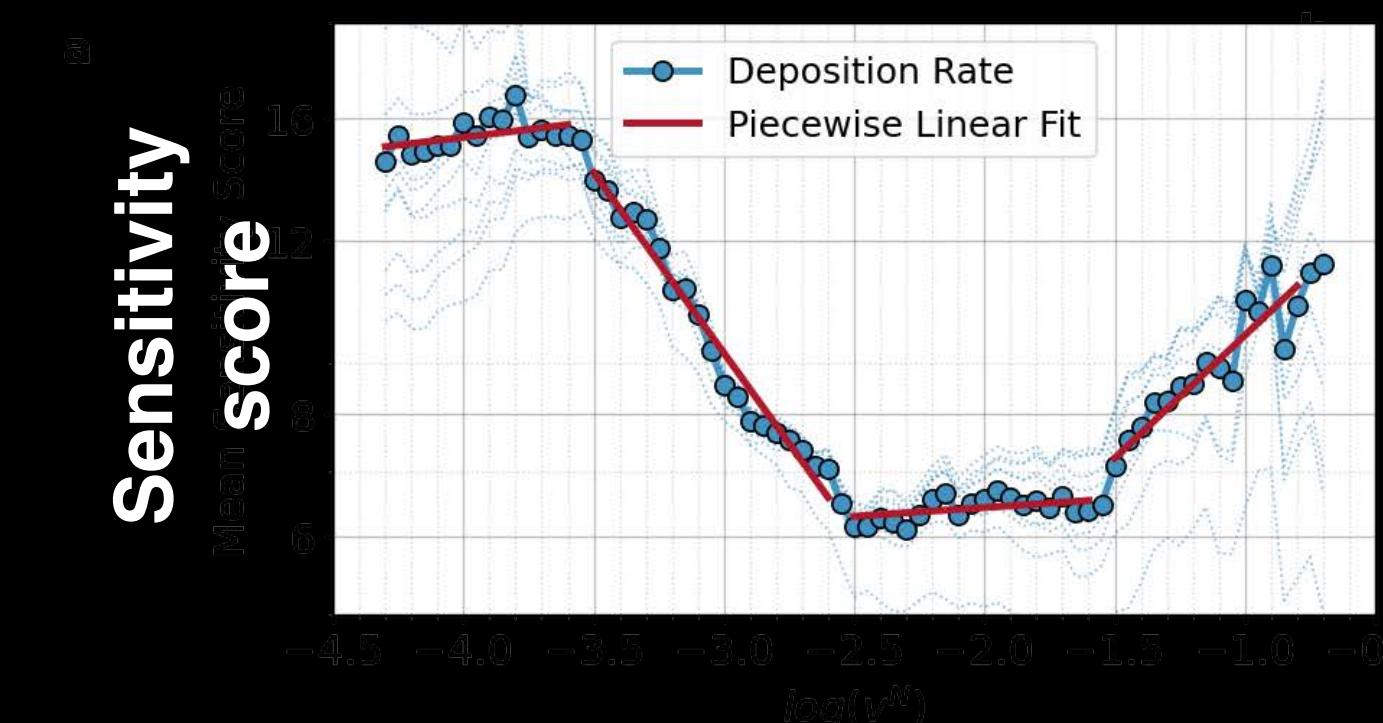
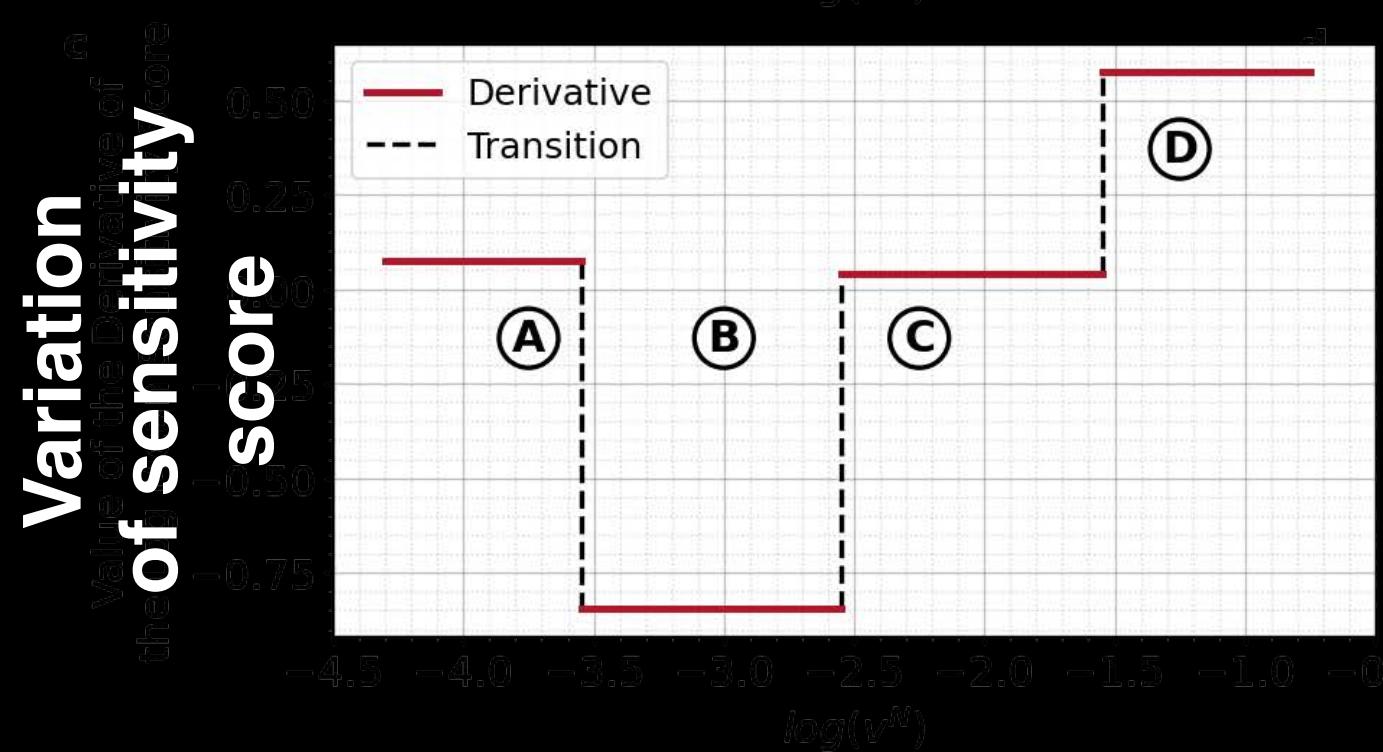
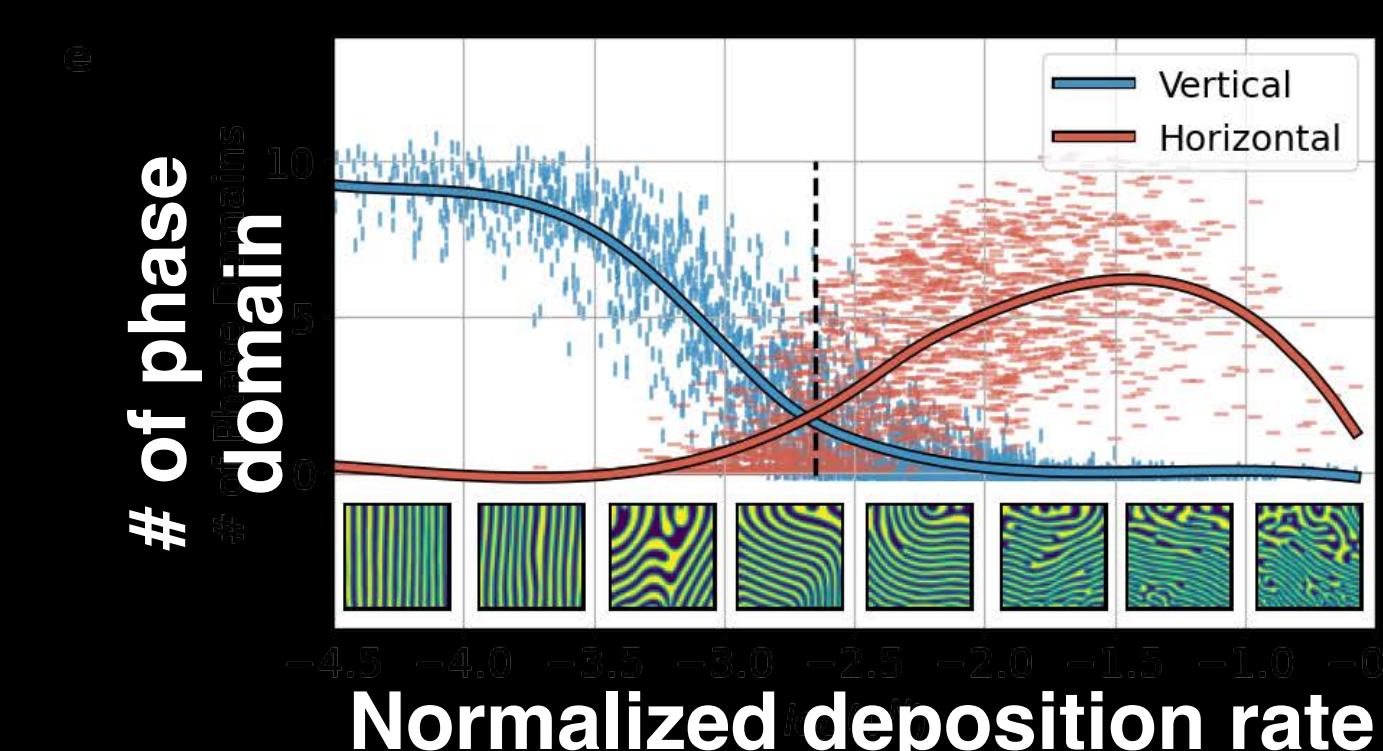


- **Qualitative changes** in microstructural patterns correspond to **changes in uncertainty** for our self-supervised prediction problem
- Detect major topological transitions ( $A \Rightarrow C$ )
- Detect intermediate regime (B)

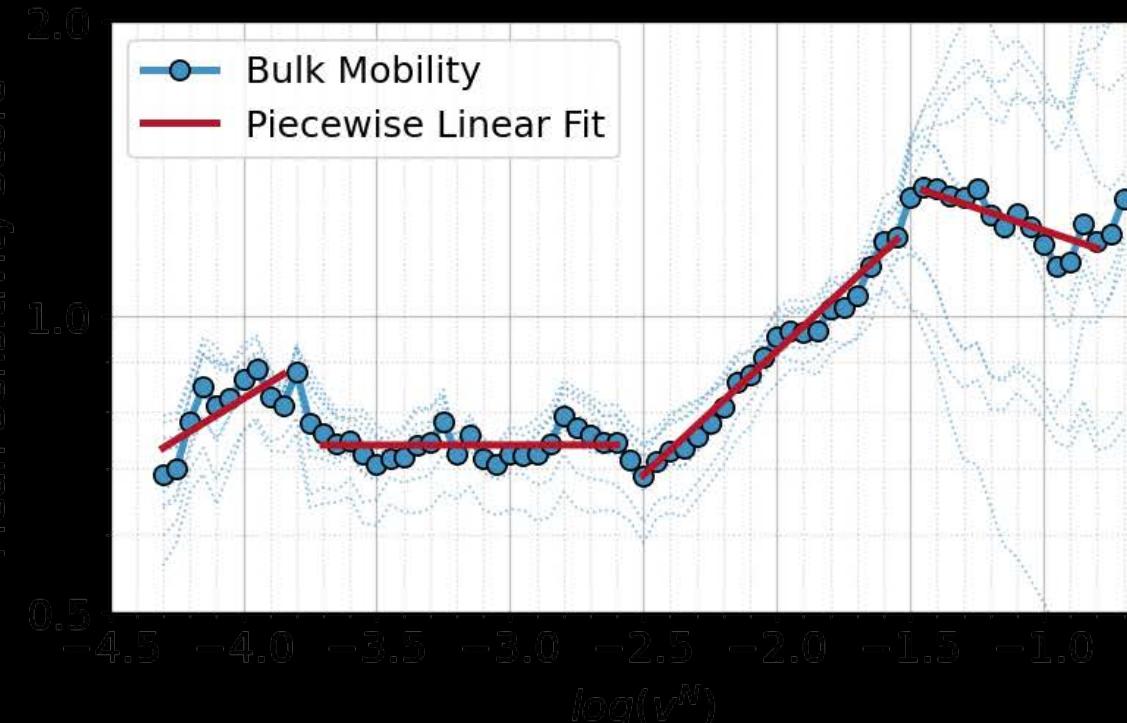
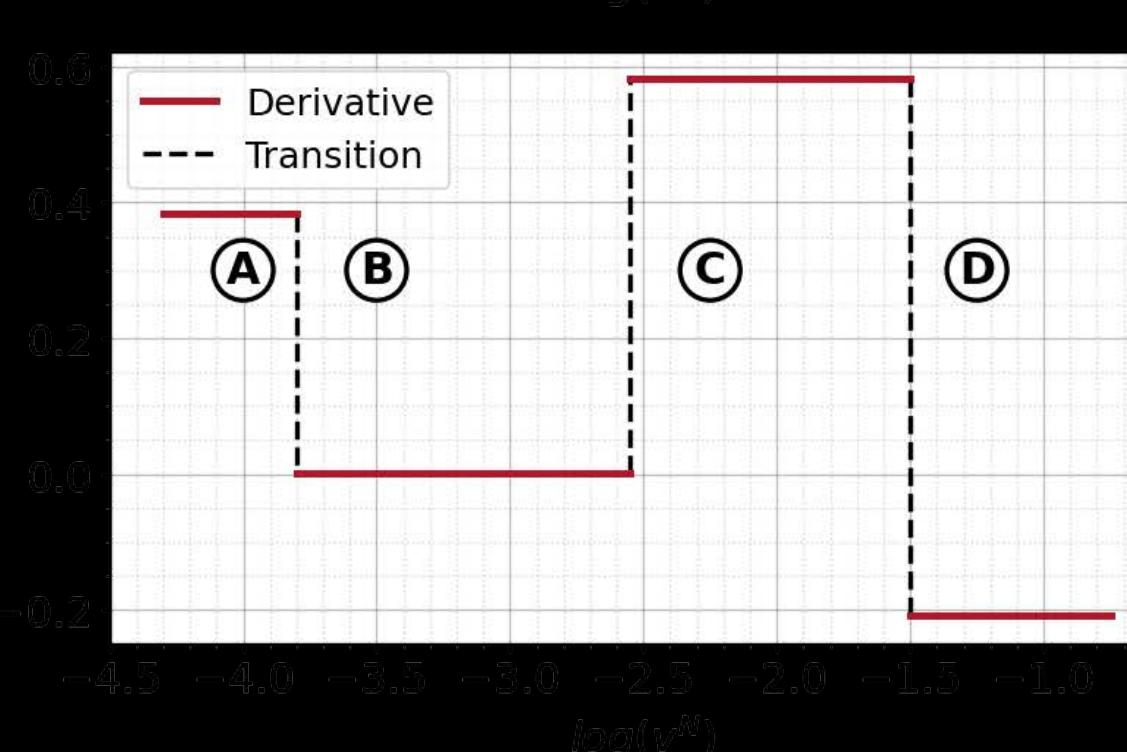
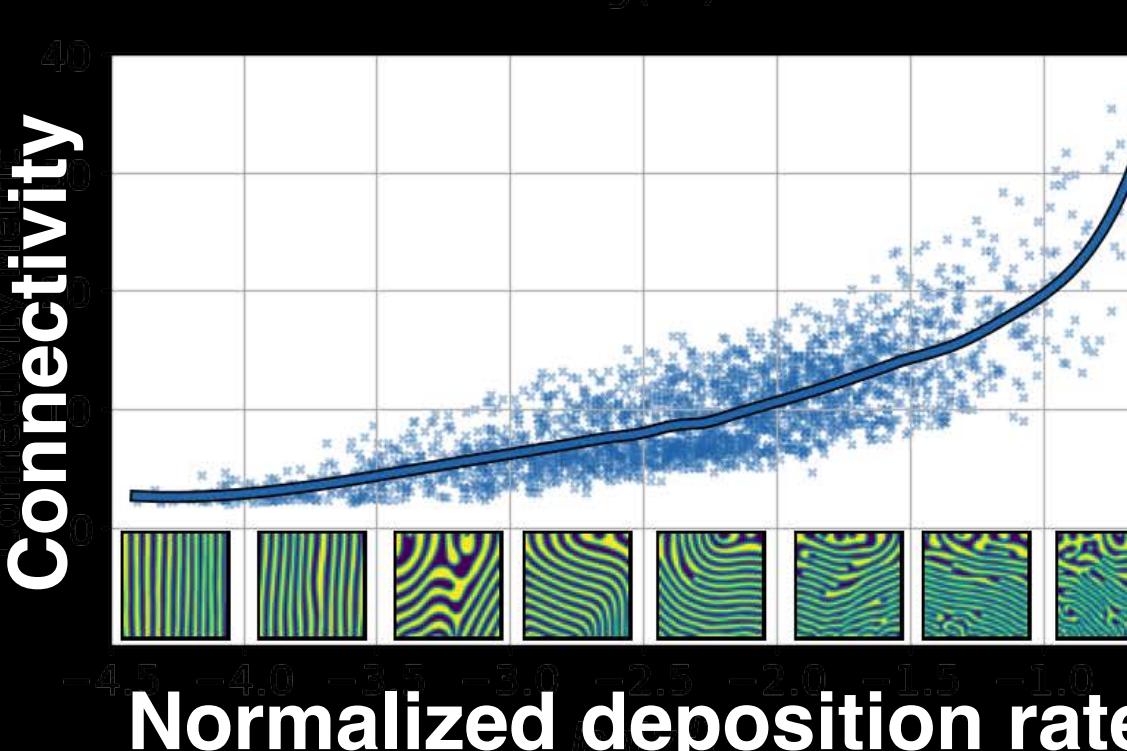


# IDENTIFYING TOPOLOGICAL TRANSITIONS: REGIMES & COMPLEXITY

Predicting deposition rate from microstructures



Predicting bulk mobility from microstructures



- **Qualitative changes** in microstructural patterns correspond to **changes in uncertainty** for our self-supervised prediction problem
- Detect major topological transitions ( $A \Rightarrow C$ )
- Detect intermediate regimes ( $A \Rightarrow B$ ;  $C \Rightarrow D$ )
- Pattern orientation vs. pattern complexity (monomodal/multimodal patterns)

# DETECTING HARD-TO-DISCERN TRANSITIONS IN PATTERN-FORMING PROCESSES BEYOND

- **Self-taught:**
  - No label needed
  - Auxiliary problem
- **Embed:** Using pre-trained CNN model learns to recognize basic patterns and more complicated geometric features
- **Predict:** Inspired by universality principle
  - Identify hierarchy of hard-to-discriminate transitions

