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CLASSICAL THEORIES OF PHASE TRANSITION RELY ON DISCONTINUITY. @ﬁzﬁﬂ‘ﬁm
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MANY PATTERN-FORMING PROCESSES ARE GRADUAL AND @ Natow
CANNOT BE DESCRIBED BY CLASSICAL TRANSITION THEORIES
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FROM A MACHINE LEARNING PERSPECTIVE: @ﬁzﬁﬂ‘ﬁm_
THIS IS A CLASSIFICATION PROBLEM aboratones

Supervised Unsupervised

e Need labels to learn e Does not need labels
 Requires prior knowledge  Use clustering for classification



EXAMPLES OF PATTERN-FORMING PROCESSES @ﬁ:ﬁﬂ‘ﬁm
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e Spinodal decomposition
* Process parameters: mobility of phase A and B, phase fraction
. Transmon expected to occur for 50% phase fraction (A-rich vs. B-rich)

8% @ Bﬁ ﬁ
* Physical vapor deposition

* Process parameters: deposition rate, deposition angle, phase mobility
e vertical-oriented, horizontal-oriented, random-oriented
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THE AMBIGUITY OF IDENTIFYING TOPOLOGICAL TRANSITIONS
FOR HIGH-ORDER & DYNAMIC TRANSITIONS
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PCA PCA + ResNet UMAP + ResNet
on microstructure image on microstructure image on microstructure image

DIM2
DIM2
DIM2

 Gradual changes in microstructure patterns when process parameters vary
 No clear clustering in low-dimensional space
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DOES THE CHOICE OF PROJECTION METHOD MATTER? @ﬁ:ﬁﬂ‘ﬁa.
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Pre-trained Simple Fine-tuned
ResNet-50 CNN ResNet-34  ResNet-50




SOLVING AN AUXILIARY PROBLEM INSTEAD @ Sandia
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Self-supervised

Supervised Unsupervised

* Need labels to learn e Does not need labels
 Requires prior knowledge ¢ Use clustering for classification

e Does not need labels

e Solve an auxiliary
(easier?) problem
closely related and
semantically connected
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RE-DISCOVERING THE CRITICAL POINT (UNIVERSALITY)

Predicting process
parameters from X,#
observed patterns
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High sensitivity: we are able to predict the input process parameter accurately
Low sensitivity: relation between input process parameter and pattern is weak
When score changes from low to high or high to low, may indicate a transition
Analogy to critical point and universality in dynamical systems
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EMBED, PREDICT, EVALUATE

High-fidelity simulations Latent space

of pattern-forming proce} F’rnjection (N dimensional)
ResNet-50 v2

!” pre-trained model
M |

Predlctlons & Confldence

< Regression >

[

[

Control Parameter sensitivity J / !
parameters | _ / U
_ X1 [ | /| !

X2 - B .

| i

- I

| C

&

X3 [ | @——FErTor .
X4 ] - o
X5 B

X6 [ ]

=
I
J
J
il
I
g
J
i
]
I
4

Sandia
National
Laboratories

Large and diverse set of pattern regimes

Pre-trained CNN (ResNet-50 v2 model) to
represent microstructure in latent space

Use feed-forward NN to regress input process
parameters from observed microstructures

Evaluate errors between predictions and
ground truth
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Training usmg
ImageNet
database

ResNet-50 v2




PREDICT: () it
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EVALUATE: Predicted  True @ oo
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e High S: we are able to predict the input parameter accurately
e Low S: relation between input parameter and pattern is weak
e When score changes from low to high or high to low, may indicate a transition
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Instance Predicted/Target Predicted/Target Sensitivity score
mobility A mobility B (Mobility A/B)
1 0.37/0.97 0.44/0.50 1.77/15.53
2 0.24/0.04 0.36/0.75 4.96/2.58
3 0.41/0.51 0.46/0.84 10.16/2.64
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EVALUATE: Predicted  True @ oo

N / Laboratories
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e High S: we are able to predict the input parameter accurately

e Low S: relation between input parameter and pattern is weak

e When score changes from low to high or high to low, may indicate a transition
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Instance Predicted/Target Predicted/Target Sensitivity score
deposition rate bulk mobility (deposition rate/mobility)
1 0.32/0.26 4.09/4.68 19.31/1.68
2 0.77/0.96 3.51/5.40 5.15/0.53
3 0.75/0.79 1.96/2.22 20.58/7.01
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IDENTIFYING TOPOLOGICAL TRANSITIONS: REGIMES & COMPLEXITY @ Sandi

-@= Phase A Mobility
Phase B Mobility

-== Transition

e (Qualitative changes in microstructural
patterns correspond to changes in
uncertainty for our self-supervised
prediction problem

 Detect major topological transitions
(A=>C)

 Detect intermediate regime (B)

Sensitivity score

=@ Phase A Mobility
Phase B Mobility
-== Transitions

Variation
of sensitivity score

Phase fraction
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IDENTIFYING TOPOLOGICAL TRANSITIONS: REGIMES & COMPLEXITY @ o,

Predicting deposition rate
from microstructures

—@= Deposition Rate

o RShem, —— Piecewise Linear Fit

Sensitivity
score

- Derivative
-= Transition

Variation
of sensitivity
score
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Normalized deposition rate

Predicting bulk mobility
from microstructures
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Normalized deposition rate
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Qualitative changes in microstructural
patterns correspond to changes in
uncertainty for our self-supervised
prediction problem

Detect major topological transitions
(A=>C)

Detect intermediate regimes
(A=>B; C=>D)

Pattern orientation vs. pattern
complexity (monomodal/multimodal
patterns)
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DETECTING HARD-TO-DISCERN TRANSITIONS @ S
IN PATTERN-FORMING PROCESSES BEYOND o

e Self-taught:
e No label needed

J ‘r@“” e Auxiliary problem
;\- - e Embed: Using pre-trained CNN
=111 model learns to recognize basic
———

patterns and more complicated
geometric features
* Predict: Inspired by universality
principle
ldentify hierarchy of
hard-to-discern transitions
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Abram et al., npj Computational Materials, 2022 17
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