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CLASSICAL THEORIES OF PHASE TRANSITION RELY ON DISCONTINUITY 
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Cui et al. 
Mater. Des. (2018)

Miller et al., 
Dalton Trans. (2015)

MANY PATTERN-FORMING PROCESSES ARE GRADUAL AND 
CANNOT BE DESCRIBED BY CLASSICAL TRANSITION THEORIES

Watanabe and  Kondo 
Trends in Genet. (2015)



FROM A MACHINE LEARNING PERSPECTIVE: 
THIS IS A CLASSIFICATION PROBLEM
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Unsupervised

• Does not need labels
• Use clustering for classification

Supervised

• Need labels to learn
• Requires prior knowledge



• Spinodal decomposition
• Process parameters: mobility of phase A and B, phase fraction
• Transition expected to occur for 50% phase fraction (A-rich vs. B-rich)

• Physical vapor deposition
• Process parameters: deposition rate, deposition angle,  phase mobility
• vertical-oriented, horizontal-oriented, random-oriented
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EXAMPLES OF PATTERN-FORMING PROCESSES
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THE AMBIGUITY OF IDENTIFYING TOPOLOGICAL TRANSITIONS  
FOR HIGH-ORDER & DYNAMIC TRANSITIONS  
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• Gradual changes in microstructure patterns when process parameters vary
• No clear clustering in low-dimensional space

PCA 
on microstructure image

PCA + ResNet
on microstructure image

UMAP + ResNet
on microstructure image
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DOES THE CHOICE OF PROJECTION METHOD MATTER?
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t-SNE

Pre-trained 
ResNet-50

Simple 
CNN ResNet-34 Fine-tuned 

ResNet-50



SOLVING AN AUXILIARY PROBLEM INSTEAD
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Unsupervised

• Does not need labels
• Use clustering for classification

Self-supervised

• Does not need labels
• Solve an auxiliary 

(easier?) problem 
closely related and 
semantically connected

Supervised

• Need labels to learn
• Requires prior knowledge



RE-DISCOVERING THE CRITICAL POINT (UNIVERSALITY)
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X2

X1

Predicting process 
parameters from 

observed patterns

• High sensitivity: we are able to predict the input process parameter accurately
• Low sensitivity: relation between input process parameter and pattern is weak 
• When score changes from low to high or high to low, may indicate a transition 
• Analogy to critical point and universality in dynamical systems



EMBED, PREDICT, EVALUATE
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1. Large and diverse set of pattern regimes

2. Pre-trained CNN (ResNet-50 v2 model) to 
represent microstructure in latent space

3. Use feed-forward NN to regress input process 
parameters from observed microstructures

4. Evaluate errors between predictions and 
ground truth
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EMBED: 

ResNet-50 v2

224x224

2048

Training using 
ImageNet 
database
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PREDICT: 

…
…

…
…

DenseReLu
512 × Droupout0.5 DenseReLu

1024 × Droupout0.5 DenseLinear
2

Hidden layer 1 Hidden layer 1 Process 
Parameters
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EVALUATE: 

• High S: we are able to predict the input parameter accurately
• Low S: relation between input parameter and pattern is weak 
• When score changes from low to high or high to low, may indicate a transition

Instance Predicted/Target 
mobility A

Predicted/Target 
mobility B

Sensitivity score 
(Mobility A/B) 

1 0.37/0.97 0.44/0.50 1.77/15.53

2 0.24/0.04 0.36/0.75 4.96/2.58

3 0.41/0.51 0.46/0.84 10.16/2.64

1 2 3

<latexit sha1_base64="kcMVFHX7YEISCTTXzbiobh7km2U="></latexit>

S = N/
NX

i

|ŷi � yi|
TruePredicted
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EVALUATE: <latexit sha1_base64="kcMVFHX7YEISCTTXzbiobh7km2U="></latexit>

S = N/
NX

i

|ŷi � yi|

Instance Predicted/Target 
deposition rate

Predicted/Target 
bulk mobility

Sensitivity score 
(deposition rate/mobility) 

1 0.32/0.26 4.09/4.68 19.31/1.68

2 0.77/0.96 3.51/5.40 5.15/0.53

3 0.75/0.79 1.96/2.22 20.58/7.01

1 2 3

TruePredicted

• High S: we are able to predict the input parameter accurately
• Low S: relation between input parameter and pattern is weak 
• When score changes from low to high or high to low, may indicate a transition 



IDENTIFYING TOPOLOGICAL TRANSITIONS: REGIMES & COMPLEXITY
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Phase fraction

• Qualitative changes in microstructural 
patterns correspond to changes in 
uncertainty for our self-supervised 
prediction problem

• Detect major topological transitions 
(A => C)

• Detect intermediate regime (B)



IDENTIFYING TOPOLOGICAL TRANSITIONS: REGIMES & COMPLEXITY
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Normalized deposition rate Normalized deposition rate

Predicting deposition rate 
from microstructures

Predicting bulk mobility 
from microstructures

• Qualitative changes in microstructural 
patterns correspond to changes in 
uncertainty for our self-supervised 
prediction problem

• Detect major topological transitions 
(A => C)

• Detect intermediate regimes 
(A=>B; C=>D)

• Pattern orientation vs. pattern 
complexity (monomodal/multimodal 
patterns)
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DETECTING HARD-TO-DISCERN TRANSITIONS 
IN PATTERN-FORMING PROCESSES BEYOND 

Deposition rate

M
obility

• Self-taught:
• No label needed
• Auxiliary problem

• Embed: Using pre-trained CNN 
model  learns to recognize basic 
patterns and more complicated 
geometric features

• Predict: Inspired by universality 
principle

• Identify hierarchy of 
hard-to-discern transitions

Abram et al., npj Computational Materials, 2022


