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DFT

System size limit: ~1000 atoms

MD

System size limit: ~1,000,000,000 atoms

*

* Image credit to Megan McCarthy

Efficient atomistic computation allows scaling



MD
*

Uncertainty Quantification (UQ) gives reliability of results

• MD simulations are (almost) always 
outside the size limit of DFT

• Often studying behavior that can not be 
replicated at smaller scale

• Trust in the model results is required – UQ 
allows for building that

* Image credit to Megan McCarthy
** Image credit to Ember Sikorski

**



Bayes Rule

Posterior probability

Likelihood Prior probability

Evidence

• For a model f(x, c) and data yi=y(xi), calibrate the model parameters, c.



Bayesian Parameter Inference

• For a model f(x, c) and data yi=y(xi), calibrate the model parameters, c.

Likelihood

Likelihood

Make some assumptions about noise:



DFT
Energysystem

Forces
On each atom
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Stresses

DFT provides training data



Density around an atom

Switching function, smooth to zero approaching Rcut

Represent different atom types

Modified polar coordinates

Points near south pole are excluded

Switch to 4D hyperspherical harmonics

where

Convert to the real valued, rotation invariant scalar triple products

Coupling coefficients (constants)

Hyperspherical harmonics basis functions

Complex valued expansion coefficients ( j = 0,1/2,1,...and m,m′=−j,−j+1,...,j−1,j )

Bispectrum components

Bispectrum – formulation of the descriptor



Linear coefficients to be fit
Constant energy contribution

Cartesian outer product

Linear SNAP model for interatomic potential – single element model

= (flattened) Bispectrum components
= F(atomic positions and geometry)
Defined for each atom in structure



Crystal Structure 1

1 row

3N rows

6 rows

Two elements (W, H). Higher 2J_max for W than for H. 55 non-zero descriptors for W, 14 non-zero descriptors for H

Energy of a W only structure = [34.50, -1.82, -2.94, 2.00, -3.32, -1.92, … , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …]
Energy of a H only structure =  [0, 0, 0, 0, 0, ..., 2.37, 1.77, -0.33, 1.12, -0.50, -1.87, 0, 0.87, 0, 0, 0, 2.87, 0, 0, 0, …]
Energy of a W+H structure =     [16.86, -0.98, -2.27, 4.15, -2.31, -0.46, …, 0.53, -0.17, 0, 0.09, 0, 0, 0, -0.04, 0, 0, 0, …]

Force follow the same zero-nonzero patterns based on what atoms surround the atom of interest

Example Descriptor Rows



Group 1

Group 2

Group 3

Group …

Group M

Crystal Structure 1

1 row

3N rows

6 rows

Ab=y

Model fitting – linear regression problem



Group 1

Group 2

Group 3

Group …

Group M

Ab=y

weight 1

weight 2

weight 3

weight …

weight M

=>

Weighted linear regression



Ab=y

Ab*= predictions

Trained model:     

b* = best fit solution of least-squares problem:

FitSNAP default solver

(with a vector of group weights)



Ab=y

(identical to standard least squares regression fit)

Ab*= predictions

Trained model:     

(with a vector of group weights)

Can draw samples / do statistics!

UQ-FitSNAP = Analytical Bayesian solver



Pool based active learning – helping automate interatomic potential creation
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Initialize:
Load settings, 

structures

Train, return 
errors, covariance

Optional:
Initial DFT 

calculations

qbc_quinn

FitSNAP

VASP

Make 
FitSNAP
inputs

Make 
FitSNAP
inputs

Calculate descriptors 
for unlabeled pool

Evaluate 
uncertainty; choose 

set of structures

DFT of structures

Update 
training set

Active 
Learning 

code

UQ-
FitSNAP

FitSNAP

VASP

(LAMMPS)

(LAMMPS)

Active Learning Code Structure



Active Learning – structure selection by prediction uncertainties
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1 Energy 3N Force components 6 Stress components

(optional)
aggregate

(optional)
aggregate

x weightE x weightF x weightS

aggregate

Each aggregate can be: max, mean, median, etc.



Case Studies



General settings
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• Using the example datasets from FitSNAP
• Begin with a small subset as training set
• Test set is separated at the start, equally sampled from all defined groups, and held constant

• Use the DAKOTA pre-determined weights from the example files

• Using the ‘anl’ form for UQ approximation



Ta dataset
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Almost entire dataset

EOS structures chosen other structures chosen



InP dataset – minimal starting data;
models plateau with very few structures
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As good as entire dataset!

iP structures chosen

EOS structures chosen

*Passive (random) mostly picks s_iP, Shear, and S_iIn due to dataset group sizes

Shear structures chosen



Active learning – motivation for clustering
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• Minimal benefit to taking many samples that are very similar

• More efficient to get multiple samples per active learning loop
• Want to encourage diverse selections

descriptor

uncertainty



Active learning – clustering
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• Kmeans clustering
• requires assumed # of clusters
• optimal # of clusters determined by ’knee’ method
• determine sum of squared distances from cluster centers for each # of clusters
• select point at which the second derivative becomes negative



InP dataset – minimal starting data – clustering
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Questions?
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