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P Efficient atomistic computation allows scaling

' DFT

System size limit: ~1,000,000,000 atoms

System size limit: ~1000 atoms

* Image credit to Megan McCarthy




/ Uncertainty Quantification (UQ) gives reliability of results

%

4 - MD simulations are (almost) always M D
outside the size limit of DFT _

« Often studying behavior that can not be
replicated at smaller scale

* Trustin the model results is required - UQ
allows for building that

* Image credit to Megan McCarthy
** Image credit to Ember Sikorski
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/ Bayes Rule
o

‘4

« For a model f(x, ¢) and data y,=y(x,), calibrate the model parameters, c.

Likelihood Prior probability

!

p(cly) = PV ((”)1)’(0) sy p(cly) o p(y|c)p(c)
1 101 Y

Posterior probability

Evidence
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o Bayesian Parameter Inference

7/
4 « For a model f(x, ¢) and data y,=y(x,), calibrate the model parameters, c.
Likeli‘hood
p(y|c)p(c)
p(cly) =
p(y)

Make some assumptions about noise: y; = f(x;, ¢) + o;€;, where ¢; ~ N (0, 1)

Likelihood

1 3 ) — )2
p(y|C) X Hexp( (f(SCz-,.2O)-i2 ;) )




P/ DFT provides training data
/
’ DFT

‘ Ene rgysystem

Stresses

Forces

On each atom
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,/Density around an atom

4 Modified polar coordinates
pi®) =8+ Y feri)wid®— 1) i

FT <Reut 50 = SSTHXR—
Represent different atom types cut
Points near south pole are excluded

Bispectrum - formulation of the descriptor

Switching function, smooth to zero approaching R

Switch to 4D hyperspherical harmonics

I R
pm= Y > > ul Ul ©,6,0)

j=0,1, . m=—jm'=—j

Convert to the real valued, rotation invariant scalar triple products

Hyperspherical harmonics basis functions jmmc - j2
yp p B,h,jz,j= Z E Z Hj]nmh$ Hml miumz-mi
where mi,my=—ji mp,my=—jz mm'=—j / ’
J grd .
Uy =Up (©0,0,00+ Y fei)wiU;, 1, (60,6,4)  Bispectrum components

T Tir <Reut Coupling coefficients (constants;
Complex valued expansion coefficients (j=0,1/21,..and mm'==j,—~j+1,..j=1j) ‘




Linear SNAP model for interatomic potential - single element model

z
4 ESNAP(rN) — Nﬁo -+ ﬂ . E B’ B! = (flattened) Bispectrum components

, = F(atomic positions and geometry)
I 1=1 Defined for each atom in structure
Linear coefficients to be fit

Constant energy contribution

0B’
FSNAP_ VjEsnap=—P Z ar;
i=1
N B!
Wsnap = _er ® V;iEsnap = — ZI'J ® Z v
j=1 1 j=1 i=1 J

Cartesian outer product
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e Example Descriptor Rows

/
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Two elements (W, H). Higher 2] max for W than for H. 55 non-zero descriptors for W, 14 non-zero descriptors for H

Energy of a W only structure = [34.50, -1.82, -2.94, 2.00, -3.32,-1.92,...,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, ...]
Energy of a H only structure = [0,0,0,0,0, .., 2.37,1.77,-0.33,1.12,-0.50,-1.87,0,0.87,0,0,0,2.87,0,0,0, ...]
Energy of a W+H structure = [16.86,-0.98,-2.27,4.15,-2.31,-0.46, ..., 0.53,-0.17,0,0.09,0,0, 0,-0.04,0,0,0, ...]

Force follow the same zero-nonzero patterns based on what atoms surround the atom of interest

Crystal Structure 1

N i
T row E :i=1
N i
3N rows —» :~4 %

N Ns 9B’
6 rows — Zji] rf,r Zizsl arf
J
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e Model fitting - linear regression problem

%
4 Ab=y

Crystal Structure 1

T row 2&1 2 L = - _ -
_ i Group 1 :
3N rows — Z{E] % _____ Egm - E;ef
N Ns 8B
© rows — Zji] rjr Zi; 2P Group 2
i/ ] —=-=== | ﬁO _ qu B Fr_ef

Group 3 g |~ J,a J,0
aroup .. Wgrg s W;e}J; s
Group M i )
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/" Weighted linear regression

AD=y => (WOA)b = (WQy)
Ab = §
Group 1 weight 1
Group 2 weight 2
Group 3 weight 3
Group ... weight ...
| GroupM -] weight M




‘4 FitSNAP default solver

,/ ) a 2 Ab:v i

/ L2 loss function = Z(yt'rue — Ypredicted) - — pam _ pref
i=1 i1 B ) :

—z:“l e .[ﬁo}= Pl - F2

gm ref
waﬁ.s - W::e,ﬁ.s

b* = best fit solution of least-squares problem: min(|g — }ib|2)

(with a vector of group weights)

(WOA)D = (WQY)
Ab =§

Trained model:

Ab*= predictions




/____UQ-FitSNAP = Analytical Bayesian solver
% n Ab=y

/ L2 loss function = Z(ytrue — ypredicted)z - L — } g pref
i=1 2is Bi_ :
T i\=1 (iT "Xl \[f]=] e
SNAP model fit= (A" -A)"" - (A" -g)=0b" _y N ey o 5
. . ' ' j=1 j' 1 5 ﬁ wam _Wref
(identical to standard least squares regression fit) S — whe R

Yy — fib*)T - (y — ,Zib*) ‘ (ﬁT . )_1 _ ¥y (with a vector of group weights)
N—k—2 (WOADb = (WQy)

Ab =§

=

SNAP fit covariance = (

b= MVN(b*, E) Can draw samples / do statistics!

Trained model:

Ab*= predictions  diag(AXAT)= prediction variance




/ Pool based active learning - helping automate interatomic potential creation

%
/4

Tl'ain mode| has
a\railable Iahﬁle

ed on
ddata

Labeled Data

Labe|

Labe) Selectey -
beleq Samples

unia

Unlabeled
Data Pool




Active Learning Code Structure

/'\

Active Initialize: 4 .Make 'Make Evaluate Usike
Learning Load settlngs FitSNAP FitSNAP uncertalnty choose trainin set
code structures L inputs inputs set of structures 2

UQ- Train, return
FitSNAP errors, covariance
Calculate descriptors
FitSNAP for unlabeled pool

Optional: J

VASP Initial DFT

[ DFT of structures J
calculations
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/" Active Learning - structure selection by prediction uncertainties

1 Energy 3N Force components 6 Stress components
(optional) (optional)
\/ aggregate aggregate
\x weight, X weight. X WeightS/
aggregate

\/

Fach aggregate can be: max, mean, median, etc.




Case Studies




/" General settings
/d

« Using the example datasets from FitSNAP
*  Begin with a small subset as training set

- Test set is separated at the start, equally sampled from all defined groups, and held constant

rd
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« Use the DAKOTA pre-determined weights from the example files

« Using the ‘anl’ form for UQ approximation




passive training passive training
-@- passive testing @ passive testing
- active training
- active testing
101 7 1,31 .
Almost entire dataget
5 :
o i
© =
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© 11+
3 =
(o2 =
2 10%4 2 10°;
© 1 T ]
[} H]
= =
10-1 7 101 .

102

# data points # data points

EOS structures chosen other structures chosen




// InP dataset - minimal starting data;
' models plateau with very few structures

10° 4 passive training 107 passive trairing
-@- passive testing @ passive testing
- active training
107 4 107+ - active testing
105 IP structures chosen
S 105 2
w u EOS structures chosen
(] L
5 5 1071
3 103 2
@ ¥ Shear structures chosen
c [~
o m 10! -
= 101 - =
10-% -
10—1 4
BE— 10-3 -
6x100 10l =108 qg 2 x 101 3 % 10L

# data points
As good as entire dataset!

# date points

*Passive (random) mostly picks s_iP, Shear, and S_iln due to dataset group sizes



/" Active learning - motivation for clustering
4

« Minimal benefit to taking many samples that are very similar

rd
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- More efficient to get multiple samples per active learning loop
Want to encourage diverse selections

uncertainty

» descriptor




/" Active learning - clustering
4

« Kmeans clustering
* requires assumed # of clusters

« optimal # of clusters determined by 'knee’ method
« determine sum of squared distances from cluster centers for each # of clusters

rd
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» select point at which the second derivative becomes negative

Mormalized Knee Point

1.1 4 = normalized curve
—— difference curve
L0 —-- kneefelbow

0 01 02 03 04 O3 06 07 0B 0% 10




/

/d

InP dataset - minimal starting data - clustering

Mean Sguared Error

]_DH _

1[}‘5 _

1[}4 4

102 _

lﬂ,-:l ]

10—2 ]

passive training
-~ passive testing
- active training
@ active testing

6 x 10"

T
10!

# data points

2x 107




Questions?

Sandia U.S. DEPARTMENT OF
National :



